Contents in Brief

Contributing AuthorsxixPrefacexxiPrologue1

Part I: Basic Themes

1	Intelligent Agents 27 Michael Wooldridge
2	Multiagent Systems and Societies of Agents 79
	Michael N. Huhns and Larry M. Stephens
3	Distributed Problem Solving and Planning 121
	Edmund H. Durfee
4	Search Algorithms for Agents 165
	Makoto Yokoo and Toru Ishida
5	Distributed Rational Decision Making 201
	Tuomas W. Sandholm
6	Learning in Multiagent Systems 259
	Sandip Sen and Gerhard Weiss
7	Computational Organization Theory 299
	Kathleen M. Carley and Les Gasser
8	Formal Methods in DAI: Logic-Based Representation and Reasoning 331
	Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff
9	Industrial and Practical Applications of DAI 377
	H. Van Dyke Parunak

Part II: Related Themes

- 10 Groupware and Computer Supported Cooperative Work 425 Clarence Ellis and Jacques Wainer
- **11 Distributed Models for Decision Support** 459 Jose Cuena and Sascha Ossowski
- **12 Concurrent Programming for DAI** 505 Gul A. Agha and Nadeem Jamali
- **13 Distributed Control Algorithms for AI** 539 Gerard Tel

Glossary 583 Subject Index 609

Contents in Detail

Contributing Authors xix

1

Preface xxi

Purpose, Features, Readership, How to Use This Book, One Final Word, Acknowledgments

Prologue

Multiagent Systems and Distributed Artificial Intelligence 1 $\mathbf{2}$ Intelligent Agents that Interact Challenging Issues 5Applications 6 Rationales for Multiagent Systems 8 A Guide to This Book 9 The Chapters 9 The Exercises 19The Glossary 19A Few Pointers to Further Readings 20References 21

Part I: Basic Themes

1 Intelligent Agents 27

Michael Wooldridge

- 1.1 Introduction 27
- 1.2 What Are Agents? 28
 - 1.2.1 Examples of Agents 31
 - 1.2.2 Intelligent Agents 32
 - 1.2.3 Agents and Objects 34
 - 1.2.4 Agents and Expert Systems 36

- Contents
 - 1.3 Abstract Architectures for Intelligent Agents 36
 - 1.3.1 Purely Reactive Agents 38
 - 1.3.2 Perception 38
 - 1.3.3 Agents with State 40
 - 1.4 Concrete Architectures for Intelligent Agents 42
 - 1.4.1 Logic-based Architectures 42
 - 1.4.2 Reactive Architectures 48
 - 1.4.3 Belief-Desire-Intention Architectures 54
 - 1.4.4 Layered Architectures 61
 - 1.5 Agent Programming Languages 66
 - 1.5.1 Agent-Oriented Programming 67
 - 1.5.2 Concurrent METATEM 69
 - 1.6 Conclusions 70
 - 1.7 Exercises 71
 - 1.8 References 73

2 Multiagent Systems and Societies of Agents 79

Michael N. Huhns and Larry M. Stephens

- 2.1 Introduction 79
 - 2.1.1 Motivations 80
 - 2.1.2 Characteristics of Multiagent Environments 81
- 2.2 Agent Communications 83
 - 2.2.1 Coordination 83
 - 2.2.2 Dimensions of Meaning 84
 - 2.2.3 Message Types 85
 - 2.2.4 Communication Levels 86
 - 2.2.5 Speech Acts 87
 - 2.2.6 Knowledge Query and Manipulation Language (KQML) 88
 - 2.2.7 Knowledge Interchange Format (KIF) 92
 - 2.2.8 Ontologies 94
 - 2.2.9 Other Communication Protocols 95
- 2.3 Agent Interaction Protocols 96
 - 2.3.1 Coordination Protocols 97
 - 2.3.2 Cooperation Protocols 99
 - 2.3.3 Contract Net 100
 - 2.3.4 Blackboard Systems 103
 - 2.3.5 Negotiation 104
 - 2.3.6 Multiagent Belief Maintenance 107
 - 2.3.7 Market Mechanisms 109
- 2.4 Societies of Agents 111
- 2.5 Conclusions 114

- 2.6 Exercises 114
- 2.7 References 118

ix

3 Distributed Problem Solving and Planning 121

Edmund H. Durfee

- 3.1 Introduction 121
- 3.2 Example Problems 122
- 3.3 Task Sharing 124
 - 3.3.1 Task Sharing in the Tower of Hanoi (ToH) Problem 125
 - 3.3.2 Task Sharing in Heterogeneous Systems 127
 - 3.3.3 Task Sharing for Distributed Sensor Network Establishment (DSNE) 129
 - 3.3.4 Task Sharing for Interdependent Tasks 130
- 3.4 Result Sharing 131
 - 3.4.1 Functionally Accurate Cooperation 131
 - 3.4.2 Shared Repositories and Negotiated Search 133
 - 3.4.3 Distributed Constrained Heuristic Search 133
 - 3.4.4 Organizational Structuring 135
 - 3.4.5 Communication Strategies 137
 - 3.4.6 Task Structures 138
- 3.5 Distributed Planning 139
 - 3.5.1 Centralized Planning for Distributed Plans 139
 - 3.5.2 Distributed Planning for Centralized Plans 140
 - 3.5.3 Distributed Planning for Distributed Plans 141
- 3.6 Distributed Plan Representations 149
- 3.7 Distributed Planning and Execution 151
 - 3.7.1 Post-Planning Coordination 151
 - 3.7.2 Pre-Planning Coordination 152
 - 3.7.3 Interleaved Planning, Coordination, and Execution 153
 - 3.7.4 Runtime Plan Coordination Without Communication 156
- 3.8 Conclusions 157
- 3.9 Exercises 158
- 3.10 References 161

4 Search Algorithms for Agents 165

Makoto Yokoo and Toru Ishida

- 4.1 Introduction 165
- 4.2 Constraint Satisfaction 168
 - 4.2.1 Definition of a Constraint Satisfaction Problem 168

- Contents
- 4.2.2 Filtering Algorithm 170
- 4.2.3 Hyper-Resolution-Based Consistency Algorithm 172
- 4.2.4 Asynchronous Backtracking 173
- 4.2.5 Asynchronous Weak-Commitment Search 176
- 4.3 Path-Finding Problem 179
 - 4.3.1 Definition of a Path-Finding Problem 179
 - 4.3.2 Asynchronous Dynamic Programming 181
 - 4.3.3 Learning Real-Time A^* 182
 - 4.3.4 Real-Time A* 184
 - 4.3.5 Moving Target Search 185
 - 4.3.6 Real-Time Bidirectional Search 187
 - 4.3.7 Real-Time Multiagent Search 190
- 4.4 Two-Player Games 191
 - 4.4.1 Formalization of Two-Player Games 191
 - 4.4.2 Minimax Procedure 192
 - 4.4.3 Alpha-Beta Pruning 193
- 4.5 Conclusions 195
- 4.6 Exercises 196
- 4.7 References 197

5 Distributed Rational Decision Making 201

Tuomas W. Sandholm

- 5.1 Introduction 201
- 5.2 Evaluation Criteria 202
 - 5.2.1 Social Welfare 202
 - 5.2.2 Pareto Efficiency 202
 - 5.2.3 Individual Rationality 203
 - 5.2.4 Stability 203
 - 5.2.5 Computational Efficiency 204
 - 5.2.6 Distribution and Communication Efficiency 204
- 5.3 Voting 204
 - 5.3.1 Truthful Voters 205
 - 5.3.2 Strategic (Insincere) Voters 207
- 5.4 Auctions 211
 - 5.4.1 Auction Settings 211
 - 5.4.2 Auction Protocols 212
 - 5.4.3 Efficiency of the Resulting Allocation 213
 - 5.4.4 Revenue Equivalence and Non-Equivalence 214
 - 5.4.5 Bidder Collusion 214
 - 5.4.6 Lying Auctioneer 215
 - 5.4.7 Bidders Lying in Non-Private-Value Auctions 216
 - 5.4.8 Undesirable Private Information Revelation 216

	5.4.9	Roles of Computation in Auctions 216
5.5	Bargai	ning 220
	$5.5.1 \\ 5.5.2 \\ 5.5.3$	Axiomatic Bargaining Theory 220 Strategic Bargaining Theory 221 Computation in Bargaining 223
5.6	Genera	al Equilibrium Market Mechanisms 224
	$5.6.1 \\ 5.6.2 \\ 5.6.3$	Properties of General Equilibrium225Distributed Search for a General Equilibrium226Speculative Strategies in Equilibrium Markets229
5.7	Contra	act Nets 233
	$5.7.1 \\ 5.7.2$	Task Allocation Negotiation234Contingency Contracts andLeveled Commitment Contracts239
5.8	Coaliti	on Formation 241
	5.8.1 5.8.2	Coalition Formation Activity 1: Coalition Structure Generation 242 Coalition Formation Activity 2:
	0.0.2	Optimization within a Coalition 247
	5.8.3	Coalition Formation Activity 3: Payoff Division 247
5.9	Conclu	usions 251
5.10	Exerci	ses 252

5.11 References 253

6 Learning in Multiagent Systems 259

Sandip Sen and Gerhard Weiss

- Introduction 2596.1
- 6.2A General Characterization 260
 - 6.2.1**Principal Categories** 261
 - 6.2.2262Differencing Features
 - 6.2.3The Credit-Assignment Problem 264
- 6.3Learning and Activity Coordination 266
 - 6.3.1Reinforcement Learning 266
 - 6.3.2Isolated, Concurrent Reinforcement Learners 268
 - 6.3.3Interactive Reinforcement Learning of Coordination 270
- 6.4 Learning about and from Other Agents 272
 - 6.4.1Learning Organizational Roles 273
 - 6.4.2Learning in Market Environments 275
 - 6.4.3Learning to Exploit an Opponent 278
- 6.5 Learning and Communication 281

- 6.5.1 Reducing Communication by Learning 283
- 6.5.2 Improving Learning by Communication 284
- 6.6 Conclusions 289
- 6.7 Exercises 292
- 6.8 References 294

7 Computational Organization Theory 299

Kathleen M. Carley and Les Gasser

- 7.1 Introduction 299
 - 7.1.1 What Is an Organization? 300
 - 7.1.2 What Is Computational Organization Theory? 302
 - 7.1.3 Why Take a Computational Approach? 305
- 7.2 Organizational Concepts Useful in Modeling Organizations 306
 - 7.2.1 Agent and Agency 307
 - 7.2.2 Organizational Design 310
 - 7.2.3 Task 312
 - 7.2.4 Technology 315
- 7.3 Dynamics 316
- 7.4 Methodological Issues 318
 - 7.4.1 Virtual Experiments and Data Collection 318
 - 7.4.2 Validation and Verification 319
 - 7.4.3 Computational Frameworks 320
- 7.5 Conclusions 323
- 7.6 Exercises 325
- 7.7 References 326

8 Formal Methods in DAI: Logic-Based Representation and Reasoning 331

Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff

- 8.1 Introduction 331
- 8.2 Logical Background 332
 - 8.2.1 Basic Concepts 333
 - 8.2.2 Propositional and Predicate Logic 334
 - 8.2.3 Modal Logic 335
 - 8.2.4 Deontic Logic 336
 - 8.2.5 Dynamic Logic 337
 - 8.2.6 Temporal Logic 338
- 8.3 Cognitive Primitives 342
 - 8.3.1 Knowledge and Beliefs 343

Contents

	$\begin{array}{c} 8.3.2 \\ 8.3.3 \\ 8.3.4 \\ 8.3.5 \\ 8.3.6 \\ 8.3.7 \end{array}$	Desires and Goals 343 Intentions 344 Commitments 345 Know-How 346 Sentential and Hybrid Approaches 348 Reasoning with Cognitive Concepts 349
8.4	BDI In	aplementations 349
	$8.4.1 \\ 8.4.2$	Abstract Architecture 350 Practical System 351
8.5	Coordi	nation 356
	$8.5.1 \\ 8.5.2 \\ 8.5.3$	Architecture 356 Specification Language 358 Common Coordination Relationships 359
8.6	Comm	unications 360
	$\begin{array}{c} 8.6.1 \\ 8.6.2 \end{array}$	Semantics360Ontologies361
8.7	Social	Primitives 362
	$\begin{array}{c} 8.7.1 \\ 8.7.2 \\ 8.7.3 \\ 8.7.4 \end{array}$	Teams and Organizational Structure362Mutual Beliefs and Joint Intentions362Social Commitments363Group Know-How and Intentions363
8.8	Tools a	and Systems 364
	$8.8.1 \\ 8.8.2 \\ 8.8.3$	Direct Implementations364Partial Implementations366Traditional Approaches368
8.9	Conclu	sions 368
8.10	Exercis	ses 369
8.11	Refere	nces 371

Industrial and Practical Applications of DAI 377 9

H. Van Dyke Parunak

- 9.1Introduction 377
- 9.2Why Use DAI in Industry? 378
- Overview of the Industrial Life-Cycle 9.3381
- 9.4 Where in the Life Cycle Are Agents Used? 385
 - Questions that Matter 9.4.1385
 - Agents in Product Design 9.4.2387
 - 9.4.3Agents in Planning and Scheduling 391
 - 9.4.4Agents in Real-Time Control 395

Contents

9.5	How Does Industry Constrain the Life Cycle of		
	an Agent-Based System? 399		
	9.5.1 Requirements, Positioning, and Specification 399		
	9.5.2 Design: The Conceptual Context 401		
	9.5.3 Design: The Process 401		
	9.5.4 System Implementation 407		
	9.5.5 System Operation 409		
9.6	Development Tools 410		
9.7	Conclusions 414		
9.8	Exercises 415		

9.9 References 416

Part II: Related Themes

10 Groupware and

Computer Supported Cooperative Work 425

Clarence Ellis and Jacques Wainer

- 10.1 Introduction 425
 - 10.1.1 Well-Known Groupware Examples 425
- 10.2 Basic Definitions 426
 - 10.2.1 Groupware 426
 - 10.2.2 Computer Supported Cooperative Work 427
- 10.3 Aspects of Groupware 428
 - 10.3.1 Keepers 429
 - 10.3.2 Coordinators 431
 - 10.3.3 Communicators 434
 - $10.3.4 \quad \text{Team-Agents} \quad 436$
 - 10.3.5 Agent Models 437
 - 10.3.6 An Example of Aspect Analysis of a Groupware 441
- 10.4 Multi-Aspect Groupware 442
 - 10.4.1 Chautauqua A Multi-Aspect System 442
- 10.5 Social and Group Issues in Designing Groupware Systems 443
- 10.6 Supporting Technologies and Theories 445
 - 10.6.1 Keepers 445
 - 10.6.2 Coordinators 445
 - 10.6.3 Communicators 446
 - 10.6.4 Team-Agents 446
- 10.7 Other Taxonomies of Groupware 447

xiv

- 10.7.1 Space/Time Matrix 447 10.7.2 Application Area 447 10.8 Groupware and Internet 448 10.8.1 Internet as Infrastructure 10.8.2Internet as Presumed Software
- 10.9 Conclusions 451
 - 10.9.1 Incorporating Communicators into Keepers 451

449

449

- 10.9.2 Incorporating Keepers and Communicators into
 - Coordinators 451
- 10.9.3 Future Research on Agents 452
- 10.9.4 Future Research on Keepers 452
- 10.10 Exercises 453
- 10.11 References 455

11 **Distributed Models for Decision Support** 459

Jose Cuena and Sascha Ossowski

- 11.1 Introduction 459
- 11.2 Decision Support Systems 460
 - 11.2.1 The Decision Support Problem 460
 - 11.2.2 Knowledge-Based Decision Support 462
 - 11.2.3 Distributed Decision Support Models 464
- 11.3 An Agent Architecture for Distributed Decision Support Systems 467
 - 11.3.1 Information Model 468
 - 11.3.2 Knowledge Model 469
 - 11.3.3 Control Model 471
- 11.4 Application Case Studies 472
 - 11.4.1 Environmental Emergency Management 472
 - 11.4.2 Energy Management 479
 - 11.4.3 Road Traffic Management 488
- 11.5 Conclusions 496
- 11.6 Exercises 497
- 11.7 References 503

12 Concurrent Programming for DAI 505

Gul A. Agha and Nadeem Jamali

- 12.1 Introduction 505
- 12.2 Defining Multiagent Systems 506
- 12.3 Actors 508

- 12.3.1 Semantics of Actors 510
- 12.3.2 Equivalence of Actor Systems 511
- 12.3.3 Actors and Concurrent Programming 512
- 12.4 Representing Agents as Actors 513
 - 12.4.1 Mobility of Actors 514
 - 12.4.2 Resource Model 517
- 12.5 Agent Ensembles 522
 - 12.5.1 Customizing Execution Contexts 522
 - 12.5.2 Interaction Protocols 526
 - 12.5.3 Coordination 527
 - 12.5.4 Naming and Groups 530
- 12.6 Related Work 531
- 12.7 Conclusions 533
- 12.8 Exercises 534
- 12.9 References 535

13 Distributed Control Algorithms for AI 539

$Gerard \ Tel$

- 13.1 Introduction 539
 - 13.1.1 Model of Computation 540
 - 13.1.2 Complexity Measures 541
 - 13.1.3 Examples of Distributed Architectures in AI 543

13.2 Graph Exploration 544

- 13.2.1 Depth-First Search 544
- 13.2.2 Pseudo-Fast Exploration: the Echo Algorithm 551
- 13.2.3 Searching for Connectivity Certificates 552
- 13.3 Termination Detection 556
 - 13.3.1 Problem Definition 556
 - 13.3.2 Tracing Algorithms 557
 - 13.3.3 Probe Algorithms 560
- 13.4 Distributed Arc Consistency and the Constraint Satisfaction Problem (CSP) 562
 - 13.4.1 Constraint Satisfaction and Arc Consistency 562
 - 13.4.2 The AC4 Algorithm 563
 - 13.4.3 The Distributed AC4 Algorithm 565
 - 13.4.4 Termination Detection 567
 - 13.4.5 Partitioning for Multiprocessor Computers 568
 - 13.4.6 Distributed Constraint Satisfaction Algorithm 568
- 13.5 Distributed Graph Processing 570
 - 13.5.1 The Problem: Loop Cutset 570
 - 13.5.2 Distributed Execution of the Algorithm 571

13.5.3 Complexity and Conclusions 575

13.6 Conclusions 576

13.7 Exercises 577

13.8 References 578

Glossary 583 Subject Index 609