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What Does Game Theory Study?

Interactions of rational decision-makers
(agents, players)

* Decision-makers: humans, robots, computer
programs, firms in the market, political parties

* Rational: each agent has preferences over

outcomes and chooses an action that is most
likely to lead to the best feasible outcome

* Interactions: 2 or more agents act
simultaneously or consequently



Why Study Game Theory?

e To understand the behavior of others in
strategic situations

e To know how to alter one’s own behavior in
such situations to gain advantage

* Wikipedia: game theory attempts to
mathematically capture behavior in strategic
situations, in which an individual success in

making choices depends on the choices of
others



A Bit of History

Early ideas:

— Models on competition among firms: Cournot (=1838), Bertrand
(=1883)

— 0-sum games: end of 19" century (Zermelo) and early 20t"
century (Borel)

Foundations of the field (1944):
Theory of Games and Economic Behavior by
John von Neumann and Oskar Morgenstern

Key concept: Nash equilibrium
(John Nash, 1951)

Main applications:

— microeconomics

— political science

— evolutionary biology



Normal-Form Games



Normal-Form Games

 Complete-information games
— players know each other’s preferences

e Simultaneous moves

— All players choose their action at the same time (or
at the time they make their own choice, they do not
know or cannot observe the other players’ choices)



Normal-Form Games

Formally:

* A normal-form game is given by
— aset of players N
— for each player i, a set of available actions A,
— for each player i, a utility function
u:A; x..xA, — R(real numbers)
 Action profile: Any vector (a,, ..., a,), with a, E A,
— each action profile corresponds to an outcome
— u, describes how much player i enjoys each outcome



Example: Prisoner’s Dilemma
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Two agents committed a crime.

The court does not have enough evidence to convict them
of the crime, but can convict them of a minor offence
(1 year in prison each)

If one suspect confesses (acts as an informer), he walks
free, and the other suspect gets 4 years

If both confess, each gets 3 years

Agents have no way of communicating or making binding
agreements



Prisoner’s Dilemma: the Model
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Set of players N = {1, 2}

A, = A, ={confess (C), stay quiet (Q)}
ul(C, C) = -3 (both get 3 years)

u,(C, Q) = 0 (player 1 walks free)
u,(Q, C) = -4 (player 1 gets 4 years)
u,(Q, Q) = -1 (both get 1 year)
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Prisoner’s Dilemma:
Matrix Representation

P2 quiet confess
P1
quiet ('1;'1) ('4; O)
confess (0, -4) (-3, -3)

* |nterpretation: the pair (x, y) at the
intersection of row i and column | means
that the row player gets x
and the column player gets y



Prisoner’s Dilemma:
the Rational Outcome

* P1’s reasoning: P2 Qq -
— if P2 stays quiet, P1
| should confess Q (-1,-1) | (-4, 0)
— if P2 confesses, (0, -4) | (-3, -3)
| should confess, too C

* P2 reasons in the same way

e Result: both confess and get 3 years in prison.

— note, however, if they chose to cooperate and stay
qguiet, they could get away with 1 year each.




Dominant Strategy: Definition

* Dominant strategy: a strategy that is best
for a player no matter what the others choose

* Definition: a strategy a of player i is said to be
a dominant strategy for i, if
u(ag, ...,a.4,a,a,, .., a,) 2
u(a, ...,a.3a,a,, .., a,)
forany a’ € A, and any strategies
a,, ..., a4, a,, .., a,0f other players.

* |In Prisoner’s Dilemma, Confess is a dominant
strategy for each of the players




Dominant Strategy: Discussion

* Can a player have more than one dominant
strategy?

— It can happen if some actions result always in the same
utility
e Definition: a strategy a of player i is said to be
ardominant strategy of player i jf

u(a, ..., a4, A, Ay o) a ) A >
u(a, .. aa,a,, .. a,)

strictly

forany a’ € A, and any strategies
a,, ..., a4 a,, .., a,of other players.

e Fact: each player has at most one
strictly dominant strategy



The Joint Project Game

 Two students are
assigned a project

* If at least one of them Work
works hard,
the project succeeds Slack
e Each student
— wants the project to succeed (+5)
— prefers not to make an effort (-2)

P1 P2 Work Slack

(3, 3)

(_51 5)

(51 _5)

(0, 0)

— hates to be exploited, i.e., work hard when the

other slacks (-8)




Joint Project vs. Prisoner’s Dilemma

W S
W (3) 3)« $(-5/ 5)
< | (5,5 (0,0)

Q

C

(-1,-1)

$(-41 O)

(0, -4)

(-3, -3)

In JP, row player prefers (S, W) to (W, W) to (S, S) to (W, S)
In PD, row player prefers (C, Q) to (Q, Q) to (C, C) to (Q, C)
e column player has similar preferences

These two games are equivalent!

Game theory prediction: both students will slack




e

Battle of Sexes

l"

P2 Theatre & Football

P1
Theatre (2,1) (0, 0)
Football (O/ O) (11 2)

Charlie and Marcie want to go out, either to theatre or
to a football game

She prefers theatre, he prefers football
But they will be miserable if they go to different places



Battle of Sexes

* No player has a dominant
strategy:

— T is not a dominant strategy
for Marcie:

if Charlie chooses F, Marcie prefers F

— F is not a dominant strategy for Marcie:
if Charlie chooses T, Marcie prefers T

 However, (T, T) is a stable pair of strategies:

— neither player wants to change his action
given the other player’s action

* (F, F)is stable, too



Notation

* Givenavectora=(a,, ..., a,),
let (a_, @’) be a, but with a, replaced by a’:

(g-il a’) - (a]_I *c) a -1 7 a" d I+12 °°* an)

¢ |f§ - (31 5; 7) 8)1 then (2—3’ 4) = (3' 5' 4’ 8)



Nash Equilibrium (Nash’51)

* Definition: a strategy profilea=(a,, ....., a,)
is @ Nash equilibrium (NE) if no player can
benefit by changing unilaterally his action:
foreachi=1, ..., nit holds that

u.(a)zu,(a_,,a’)foralla” in A

e 2 player case: (a3, b) is a NE if
1. uy(a, b)2uy(a’, b)foreverya’ €A,
2. U,(a, b)2u,(a, b’) forevery b’ € A,



Nash Equilibrium Pictorially

) 0, ) [k, )0, ) (0, )
) 0, ) g, )0, ) (0,
) 10, ) (s, )10, ) (0L )
Ya) 10Ly,) [OGY) 10,ya) [0,ys)
) 10,) ks, )0, ) (0, )

X must be at least as big as any x; in Y-column
Y must be at least as big as any y; in X-row



Nash Equilibria in Battle of Sexes

P2 Theatre &

Football
P1
% Theatre (2,1) (0, 0)
FOOtba” (OI O) (1; 2)

Both (T, T) and (F, F) are Nash equilibria



Nash Equilibrium and Dominant
Strategies  p,

* Prisoner’s dilemma: P1 (-1,-1) | (-4, 0)
(C, C) is a Nash equilibrium Q

(0, -4) | (-3, -3)

C

Theorem: In any 2-player normal-form game, if
* ais a dominant strategy for player 1, and

* bis a dominant strategy for player 2,

then (a, b) is a Nash equilibrium




Best Response Functions

Towards an alternative way of defining equilibria:

* Given a vector a ; of other players’ actions,
player i may have one or more actions that
maximize his utility

* Best response function:
B.(a;)=
{ainA |u.(a ,a)2u,(a , a’)foralla’inA}

* B.(a_)isset-valued

 if |B.(a.)| =1foralliandalla_, we denote the
single element of B.(a ) by b.(a )



Example

L C R

T [(2,57)](3,3)(6,3)
M (25 7°)[(4,5)(2,7)

B l(1,4%)(554°)|(2,1)
* B, (L) ={T, M} * B,(T) ={L}
* B,(C)=1{B} * B,(M)={L, R}

* B,(R)={T} * B,(B)={L C}



Best Responses and Nash Equilibria

*a=(ay ....., a,) is a Nash equilibrium if
u;(a)zu;(@,;,a)
foralliandalla’ in A,

* In the language of best response
functions:
a=(a, ....., a,) is a Nash equilibrium if
a isinB (a_) foralli



Example Revisited

L C R
T [(25,5%) (3,3 )][(6,3)
M (25 7) (4,5 ) (2,7
B |(1,4%)|(54%) (2,1 )

° Bl(l—) ={TI IVI}/ Bl(C)z{B}i Bl(R)z{T}
° BZ(T) ={I—}; BZ(M)z{L/ R}, BZ(B)={L, C}
e {T, L}, {M, L} and {B, C} are Nash equilibria



Infinite Action Spaces

* What if a player does not have a finite number
of strategies?

* There are games where each player has to
choose among infinitely many actions:

— how much time to spend on a task?
— how much to bid in an auction?

— where to locate a new factory?

— how much money to invest?

* The concept of best response functions turns
out to be very useful here....



Example: Preparing for an Exam

Two students are preparing together for a joint exam

each player’s effort level is a number in [0, 1]

if p
P
P
P

ayer 1 invests x units of effort, and
ayer 2 invests y units of effort,
ayer 1’s utility is x(c + v - x),

ayer 2’s utility is y(c + x - y),

where c is a given constant, 0 <c< 1

When utility functions are differentiable, best
responses can be found by simple calculus



Example: Preparing for an Exam

Here:

For a given y, u, is a quadratic function of x
Similarly for u,

player 1’s best response to v is (c+y)/2

player 2’s best response to x is (c+x)/2
A u, (X, yo)

(c+Yo)/2

x V



Joint Exam Preparation, Continued

* player 1’s best response to v is (c+y)/2
* player 2’s best response to x is (c+x)/2
* (c, c)is a Nash Equilibrium

A
player 2
1

c/2




Joint Exam Preparation, Algebraically

player 1’s best response to vy is (c+y)/2
player 2’s best response to x is (c+x)/2

(%, v) is @ Nash Equilibrium if
— x is 1’s best response to y
— v is 2’s best response to x

X = (c+y)/2,y = (c+x)/2

2y = c+(c+y)/2 =
Solution: x=c,y=c

4y = 3Cc+y



1.

2.

3.

4.

Nash Equilibrium: Caution

The definition does not say that each game has a
Nash equilibrium

— some do not
The definition does not say that Nash equilibrium is
unigue

— some games have many Nash equilibria

Nash equilibrium outcomes need not be strictly

better than the alternatives, what matters is that they

are not worse (to a deviation)
Not all equilibria are equally good

they can differ both in individual utilities and in total
welfare



Non-existence of NE:
Matching Pennies

Heads Tails
Heads (1; '1) ('1; 1)
Tails (_1/ 1) (11 _1)

Two players have 1 coin each

They simultaneously decide whether to display their coin with
Heads or Tails facing up

If the coins match, player 1 gets both coins

Otherwise player 2 gets them no Nash equilibrium!



Non-existence of NE:
Matching Pennies

Heads Tails
Heads (1; '1) ('11 1)
Tails (-1/ 1) (11 _1)

no Nash equilibrium!

Q: How would we play this game in practice?

A: Toss a coin



Matching Pennies: Randomization

1/2  1/2 .
H T

HI(L,-1)|(-1,1)]

T (-11 1) (11 _1)

P[win]=P[loss]=1/2
E[utility] =0

Main idea: players may be
allowed to play non-
deterministically

Suppose column player plays
* H with probability 1/2
* T with probability 1/2
If we play H, the outcome is
(H, H) w.p. 1/2 (+1);
(H, T) w.p. 1/2 (-1)
If we play T, the outcome is
(T, H) w.p. 1/2 (-1);
(T, T) w.p. 1/2 (+1)



Matching Pennies: Randomization

/2 12 | e play H w.p. p, T w.p. 1-p,
H T we get

H[(1,-1) (-1, 1) (H, H) w.p. p/2,
T1(-1, 1) (1, -1) (T, H) w.p. (1-p)/2,
(H, T) w.p.p/2,

No matter what we do, (T, T) w.p. (1-p)/2
P[win]=P[loss]=1/2 Pr[+1]=Pr[(H, H) or (T, T)]=1/2
Pr[-1] =Pr[(H, T)or (T, H)]=1/2




How Should We Play?

Suppose we (the row player) are playing against an
opponent who mixes evenly: (H w.p. 1/2, T w.p. 1/2)

Any strategy gives the same chance of winning (1/2)

However, if we play H, the opponent can switch to
playing T and win all the time

Sameifweplay T

If we play any action w.p. p < 1/2, the opponent can
switch to this action and win w.p. 1-p > 1/2

Thus, the only sensible choice is for us to mix evenly, too



Mixed Strategies

A mixed strategy of a player in a strategic game is
a probability distribution over the player’s actions

If the set of actions is {a%, ..., a'}, a mixed strategy is
a vector p = (p?, ..., p"), where

p'>20fori=1,...,r, p'+..+p'=1
p(a')= probability that the player chooses action a'

Matching pennies: mixing evenly can be written as
p=(1/2,1/2)orp(H)=p(T)=1/20r 1/2T+1/2 H

P=(p,, ..., p,): mixed strategy profile
Pure strategy: assigns probability 1 to some action



Mixed Strategies and Payoffs

Suppose each player chooses a mixed strategy
How do they reason about their utilities?

Utilities need to be computed before
the choice of action is realized

— before the coin lands
Mixed strategies generate a probability space

Players are interested in their expected utility
w.r.t. this space



Expected Utility (2 Players)

Player 1’s set of actions: A ={a*, ..., a'}
Player 2’s set of actions: B = {b*%, ..., b®}

Player 1’s utility is given by u;: AxB > R

If player 1 plays mixed strategy p = (p?, ..., p"),
and player 2 plays mixed strategy q = (g*, ..., 9°)

The expected utility of player 1 is
Ul(E' g) = 2 i=1,...,r,j=1,..,5s pi qj ul(ai' bJ)
Similarly for player 2 (replace u, by u,)



Expected Utility (n Players)

* Playeri’s set of actions: A,

e Player i’s utility is given by
u:A x..xA =R
* If player ] plays mixed strategy p

 Then the expected utility of player i is

aaaa

)3

(@], )EAL X XA,

pilat)...pnlap)uilat,....an)



Equilibria in Mixed Strategies

* Definition: A mixed strategy profile P = (p,, ..., p,)
is @ mixed strategy Nash equilibrium if for any
player i and any mixed strategy p’ of player |,

U;(P)2U (P, )

 We refer to Nash equilibria in pure strategies as
pure Nash equilibria



Equilibria in Mixed Strategies

* Theorem [Nash 1951]: Every n-player strategic

game in which each player has a finite number
of actions has at least one Nash equilibrium in
mixed strategies




Properties of Mixed Nash Equilibria

1. Given a mixed strategy profile, can we verify
that it is a mixed Nash equilibrium?

2. Given a strategic game, can we find all its
mixed Nash equilibria?



Properties of Mixed Nash Equilibria

Checking if a profile is a mixed Nash equilibrium:

 Matching pennies: Can we easily verify that
((1/2, 1/2), (1/2, 1/2)) is a mixed equilibrium?
 We need to check all possible deviations:

1. Deviations (p, 1-p) for player 1, for every p&€|[0, 1]
2. Deviations (q, 1-q) for player 2, for every g€[0, 1]

* Inifinite number of possible deviations!



Properties of Mixed Nash Equilibria

Is there an easier way?

A mixed strategy is a convex combination of pure
strategies:

p=(pt .. p")=
01(1,0,...0) + p2(0,1,0,...,0) ...+p'(O0,...,1)

If a player has a profitable mixed deviation, there
must be some pure strategy that is also profitable



Properties of Mixed Nash Equilibria

* Hence, it suffices to check only deviations to pure
strategies

* Theorem: a mixed profile P = (p,, ..., p,) is @ mixed
strategy Nash equilibrium if and only if for any
player i and any pure strategy a of player i it holds
that U, (P)=U. (P, a)

e Corollary: If a profile P is a pure Nash equilibrium
then it is also a mixed equilibrium




Example

T F * p=(4/5,1/5),a=(1/2,1/2)
(3’ 1) (O, O) ° Ul(g, g) =4x3+1x1=1.3
T e U)Jp,g)=4x1+1x3=.7
£1(0,0) (1, 3)  To check whether (p, q) is a
mixed NE, need to verify
whether

YES 1.32.5x1? —U,(p, a)2U,(F, q)
NO 1.3>.5x3? —Uip, a)2UT, g
— U,(p, a) 2 U,(p, F)
—U,(p, a) 2 U,(p, T)



Computing Mixed Nash Equilibria

Support of a mixed strategy p:

supp(p) ={a | p(a) >0}
Intuition: If an action is in the support of an
equilibrium strategy, it should not be worse than
any other pure strategy

Theorem: suppose that P is a mixed Nash
equilibrium, and p is the strategy of player i.
If p(x) >0 for some action x €A,

thenU (P, x)2U (P,,y)foranyyEA..

Corollary: If P = (P, p) is a mixed Nash equilibrium,
and x, y € supp(p), then U, (P, x)=U.(P_, y).




Computing Mixed Nash Equilibria

Consider a 2-player game, where
— A = set of actions of the 15t player with |A|=r
— B = set of actions of the 2" player with |B|=s

let A" C A, B"CB

We can find all mixed NE (p, q) with supp(p) = A’
and supp(q) = B’

— By using previous theorem

Main idea: Resort to solving a system of linear
inequalities



Finding Mixed NE With Given Support

* FixA',B’,andletp,, ..., p,, d,, ..., 0. be variables
* Constraints:

(1), ,p;=1,p;20foreachi=1,..,r

(2)~_, .q,=1,q,20foreachj=1,..,s

(3) p. >0foreacha'©A’, p. =0foreacha'& A’

(4) g, >0 foreach b’ PB’, q, = 0 foreach b & B’

(5) 2, sa;w(@’,bl) 22, . q;ula¥, b))
foreacha' €A’ andeachakEe A

(6) 2y, Piu(@', b)) 23, piuy(a’, b
foreachb'/&B andeach b= B

* All constraints are linear = can solve the system



Finding Mixed NE by
Support Enumeration

Theorem: (p, g) is a solution to the system
(1)-(6) for given A’, B” if and only it is a mixed Nash
equilibrium and supp(p) = A’, suppl(q) = B’

What if we want to find all mixed NE of this game?
Go over all pairs A’, B suchthat A’ C A, B"C B
For each (A’, B’), try to solve the system (1)-(6)
* if the system does not have a solution,
there is no mixed NE with support A’, B’
* Otherwise, every solution is a mixed NE
with support A’, B’



Finding Mixed NE by
Support Enumeration

What is the running time of this procedure?
— Suppose |A|=r, |B|=s
Then we need to solve 2" x 2° linear systems

— for r =s =3, this is 64 linear systems

Infeasible by hand, and barely feasible by
computer

Other algorithms?



Complexity Issues

Suppose we simply want to find one mixed Nash
equilibrium
Even for n = 2 players, known algorithms have

worst case exponential time [Kuhn 61,
Lemke-Howson ~ 64, Mangasarian ~ 64, Lemke ~ 65]

The Lemke-Howson remains among the most
practical algorithms till today for 2 players

Bad news: algorithms that are guaranteed to have
substantially better running time than support
enumeration are not known

— there are reasons to believe they do not exist



Complexity Issues: A Few More Details

The problem is unlikely to be NP-hard

[Megiddo, Papadimitriou ’ 89]

Proved to be PPAD-complete even for 2 players
(hardness still holds for finding a sufficiently close
approximation to an equilibrium)

[Daskalakis, Goldberg, Papadimitriou " 06, Chen, Deng, Teng ~ 06]

Main implication: the problem is equivalent to finding

approximate fixed points of continuous functions on convex
and compact domains

* i.e., unlikely to admit a polynomial time algorithm
Proved NP-hard if we add more constraints (e.g. find an

equilibrium that maximizes the social welfare)
[Gilboa, Zemel * 89, Conitzer, Sandholm ’ 03]



Strictly Dominated Actions

* Definition: for a mixed strategy p and an actionb € A,
p strictly dominates b if U, (S, p) > U, (S, b) for any
profile S . of other players’ mixed strategies

— We can define strict domination for a pair of mixed
strategies, too

 Fact 1: Itis possible that a strategy is not dominated
by a pure strategy but only by a mixed strategy

* Fact 2: It suffices to consider profiles S_. for the other
players that consist only of pure strategies




Example: Actions Dominated

by Mixed Strategies L i

e Action B of player 1 is not

strictly dominated by T or C (5,5) | (0,0)

 However, it is strictly c 1(0,0)](5,5)

dominated by their even
mixture, i.e., 0.5T + 0.5C:

. (2,0 (2,0)

— fix any strategy s = (s, 1-s) of player 2
—U,((.5,.5,0),s)=.5sx5+.5(1-s) x5=2.5
_ U]_(BI §) =2



Strictly Dominated Actions:
an Algorithmic Perspective

How can we check if an action is strictly dominated?
Suppose there are 2 players with action sets

A=1{al, ..., atand B={b', ..., b%}

If we want to check whether an action a' of the 15t player
is strictly dominated:

We need to find values for probabilities p,, ..., p, s.t.
— for every b’ in B we have the constraint

u,(@’, bl)<puy(at,bl)+...+p.uia, bl)
—also,x,.; ,p;=1,p;20foralli=1,..,r
If the system of linear inequalities has a solution we
have strict domination



Strictly Dominated Actions
and Nash Equilibria
* Theorem: a strictly dominated action is not used
with positive probability in any mixed NE

* Hence, we can eliminate strictly dominated
strategies first, and then solve the remaining
game

* |[n some cases this can lead to a much simpler
game to work with



Eliminating Strictly Dominated
Strategies: The Advantage

* To find a mixed NE in original
game by support guessing: 23 x 27
= 32 systems of linear inequalities

BUT:

* Bis strictly dominated by
(T+C)/2,

e Thus it remains to solve
a2Xx?2game

L

(5, 3)

(0, 0)

(0, 0)

(6, 8)

24




Iterated Elimination of Strictly
Dominated Actions

 Action B of player 1 is L v £
dominated by T or C (4, 4)| (4, 1)](3,0)

* None of the actions of
player 2 is dominated % c|(3,1)[(3,4)(4,0)

* |f player 1 is rational,
she would never play B

3

)
@
o)

| should not play B



Iterated Elimination of Strictly

Dominated Actions
e |f player 2 knows player 1 L M =

is rational, he can assume . (4, 4)| (4, 1) ] (3,/0)
player 1 does not play B

— then player 2 should not % c|(3,1)](3,4)](4,0)
play R

5
@

_—

| should not

play B

?




Iterated Elimination of Strictly
Dominated Actions

So | should .
not play F T (4, 4)
%c PN




Iterated Elimination of Strictly
Dominated Actions, Formally

* Given: an n-player game
— pick a player i that has a strictly dominated action
— remove some strictly dominated action of player i

— repeat until no player has a strictly dominated
action

* Fact: the set of surviving actions is
independent of the elimination order

— i.e., which agent was picked at each step



Iterated Elimination of Strictly
Dominated Actions and Nash Equilibria

Theorem: For a game G, suppose that after iterated
elimination of strictly dominated actions the set of
surviving actions of playeriis A’.. Then for any mixed

Nash equilibrium (p,, ..., p..) of G, supp(p,) € A" for
alli=1, ..., n.

— in words: iterated elimination of strictly
dominated actions cannot destroy Nash equilibria



Weakly Dominated Actions

* An action a of player i is weakly dominated by his
mixed strategy p if

—U,(s,,a)<U,(s,, p)for any profile s,

of other players’ actions
—and U (s, a)<U (s, p)

for at least one profile s _. T (2,2) | (3, 0)
* If we eliminate weakly dominated

actions, we can lose Nash equilibria: 5 | (0, 3) | (3, 3)

— T weakly dominates B
— L weakly dominates R
—yet, (B, R) is a Nash equilibrium



Iterated Elimination of Weakly
Dominated Actions and Nash Equilibria
* The elimination order matters in iterated deletion of
weakly dominated strategies
* Each order may eliminate a different subset of Nash
equilibria
* Can we lose all equilibria of the original game?

e Theorem: For every game where each player has a
finite action space, there is always at least one
equilibrium that survives iterated elimination of
weakly dominated strategies

— thus: if we care for finding just one Nash equilibrium, no
need to worry about elimination order



A special case: 0-sum games

* Games where for any actions ac A, bE A,

u,(a, b) =-u,(a, b)

 The payoff of one player is the payment 4
made by the other

* Also referred to as strictly competitive 1

* It suffices to use only the matrix of player 1
to represent such a game

* How should we play in such a game?



A special case: 0-sum games

|dea: Pessimistic play

Assume that no matter what you choose
the other player will pick the worst 4

outcome for you
Reasoning of player 1: 1

— If I pick row 1, in worst case | get 2

— If I pick row 2, in worst case | get 1

— | will pick the row that has the best worst case
— Payoff = max; min; R;; = 2
Reasoning of player 2:

— If I pick column 1, in worst case | pay 4

— If I pick column 2, in worst case | pay 3

— 1 will pick the column that has the smallest worst case payment
— Payment = min, max; R; = 3



A special case: 0-sum games

In general max; min; R; # min; max; R;

Pessimistic play with pure strategies does not always lead
to a Nash equilibrium

Suppose we do the same with mixed strategies

We would need then to compute the quantities:

— max, min, u,(s, t)

— min, max, u,(s, t)



A special case: 0-sum games

Back to the example:

* We deal first with max, min, u,(s, t)

* The maximum is achieved at some strategy 4 2
S=(sy, ) =(sy, 1—5y)

* Fact: Given s, the quantity min, uy(s, t) is 1 3

minimized at a pure strategy for player 2

* Hence we need to compute:

max,, min{4s, + 1-s;, 2s, + 3(1-s,) } = max, min{3s;+1,3 -5, }



e Just need to maximize the minimum of 2

A special case: 0-sum games

* Computing max,, min{3s;+1,3—s, |

lines 4

| | )
0 1/2 1 51



A special case: 0-sum games

* Computing max,, min{3s;+1,3—s, |

e Just need to maximize the minimum of 2

lines 4 2

The min. is maximized at
the intersection =» s, = 1/2




A special case: 0-sum games

Overall:
* max, min, u,(s, t) = max,, min{3s;+1,3-5s,}
=3*1/2+1=5/2 4
e Player 1 should plays=(1/2, 1/2) to
guarantee such a payoff 1

* By doing the same analysis for player 2, we
have min, max u,(s, t) =5/2

* Player 2 should play t = (1/4, 3/4) to
guarantee such a payment

* |sitacoincidence that

max, min, u,(s, t) = min, max, u,(s, t)?



The Main Result for 0-sum games

Theorem: For any finite 0-sum game:

1. max, min, u(s, t) = min, max, u,(s, t) (referred to
as the value of the game)

2. The (mixed) strategy profile (s, t), where the value
of the game is achieved, forms a Nash equilibrium

3. All Nash equilibria yield the same payoff to the
players

4. If (s, t), (s’, t’) are Nash equilibria, then (s, t’), (s’, t)
are also Nash equilibria



Extensive-Form Games



Simultaneous vs. Sequential Moves

* So far, we have considered games where
players choose their strategies simultaneously

4 Oo o°

 What if players take turns choosing their

1 ?
actions: Footbalk? OK,
A football
\ oo oo%




Games With Sequential Moves:
More Examples

Y| X|O

XIX|O

Chess and tic-tac-toe may differ in difficulty,

but the underlying principle is the same: players
take turns making moves, and eventually either
one of the players wins or there is a tie




Another Example: Market Entry

Suppose that in some country firm 1 is currently
the only available fast food chain

Firm 2 considers opening their restaurants in
that country

~irm 2 has 2 actions: enter (E), stay out (S)
f firm 2 stays out, firm 1 need not do anything

f firm 2 enters, firm 1 can either fight (F) (lower
prices, aggressive marketing) or accept (A)



Market Entry: Payoffs

e |f firm 2 stays out, its payoff is
0, and firm 1 has a payoff of 2

e |If firm 2 enters and firm 1
fights, each gets a payoff of -1

e |f firm 2 enters and
firm 1 accepts, they share
the market, so both get

a payoff of 1 (1, -1)

(1, 1)




Extensive Form Games: General Case

* An extensive-form game
a game tree:

is described by

— rooted tree, with root corresponding to

the start of the game

— each internal node of the tree is labeled by a player

— each leaf is labeled by a payoff vector

(assigning a payoff to eac
— For a node labeled by a p
the node are labeled by t

n player in the game)
ayer X, all edges leaving

he actions of player X



Extensive Form Games:
Playing The Game

Let the label of the root be x

Then the game starts by player
x choosing an edge from the
root; let y be the label of the
endpoint of this edge

Player y chooses next, etc. (1,4,2)

Players may appear more than
once in the tree

Not all players appear on all (1,1,5)  (6,6,6)
paths



Extensive Form Games: Strategies
1

Strategy of player x:
a complete plan, i.e., which action would x
choose for each node labeled with x

Caution: Need to specify what to do even
for nodes that seem unlikely to occur due
to the players’ choices

Player 1 has 6 strategies: 12
(L1, L4), (L1, R4), (C1, L4), (C1, R4), (R1, L4),
(R1, R4)

L4 looks redundant in (C1, L4) :

if 1 chooses C1, he will not be able to
choose L4

But still (C1, L4) is a valid strategy

If by mistake C1 is not played, then player
1 knows what to choose between L4, R4

R3



Market Entry: Predicting the Outcome

 How should players choose a
strategy?
* Firm 1 can reason as follows:

— If firm 2 enters, the best for me is to
play A
* Firm 2 reasons as follows:

— if l enter, firm 1 is better off
accepting, so my payoffis 1

— if | stay out, my payoffis O
— thus | am better off entering
 The only “rational”
outcome is (E, A)

* Corresponds to a backward
induction process




Predicting The Outcome:
Backward Induction

* The outcome of the game can be predicted
using backward induction:
— Start with any node whose children are leaves only

— For any such node, the agent who chooses the
action will determine all payoffs including his own,
so he will choose the action maximizing his payoff

* breaking ties arbitrarily (we will come back to this)
— Fix his choice of action, and delete other branches

— Now his node has one outgoing edge, so it can be
treated as a leaf

— Repeat until the root’s action is determined



Backward Induction: Example

Player 1 prefers (6, 6, 6) to
(1, 1, 5), so he chooses R4
Player 2 prefers (6, 6, 6) to
(1, 4, 2), so he chooses R2
Player 3 prefers (0, 1, 2) to
(1, 1, 1), so he chooses R3
Player 1 prefers (6, 6, 6) to
(2,0,3)and (0, 1, 2),

so he chooses L1

(L5 (56,6
Strategies for 1, 2, 3: (L1, R4), R2, R3



Converting Extensive Form Games
Into Normal Form Games

* Given an extensive-form game G,
we can list all strategies of each player

 Let N(G) be a normal-form game with the
same set of players as G such that for each
player i, {actions of playeriin N(G)} =
{strategies of player iin G}
(L2, L3) (L2,R3) (R2,13) (R2, R3)

L1 R1 ‘ 1] (1,2) [ (1,2) ] (2,3) ] (2, 3)
L2 /\ R2 L3 /\R3 r1 | (3,1) | (2,0) | (3,1) | (2,0)

(1,2) (2,3) (3,1) (2,0)




Predicting the Outcome: Nash

Equilibria of the Normal-Form Game
Can we use the (pure) NE of N(G) as a
prediction for the outcome of G?

How do they relate to Bl outcomes?

Claim: any backward induction strategy profile
in the extensive-form game G corresponds to
a NE profile in the normal-form game N(G)

Is the reverse true?



Market Entry Revisited

* Backward induction outcome of
the extensive-form game
is (E, A)

* Nash equilibria of the

corresponding normal form
game are (E, A) and (S, F)

(-1,-1) (1,1)
A F

 Thus, the converse is not true
E (1/ 1) (-11 _1)

| (0,2) | (0,2)




Market Entry Revisited

The NE (S, F) is also not a “good”
prediction

(S, F) is a NE, because firm 1
promised to fight if firm 2 deviates
toE

— but thisis an empty threat: itis

irrational for firm 1 to fight! (-1,-1) (1, 1)
The matrix representation does ' '
not capture the fact that firm 2 A F
first
moves firs el (1,1) | (-1, -1)

We need a different solution

| .
concept than just Nash equmbrla.S (0,2) | (0,2)




Subgames

 For any game G, each subtree
defines a subgame G’

 In G’
— same set of players as G

— set of actions of a player:
subset of his actions in G

* Each strategy in G
corresponds to a strategy in
G’ (by projection) (1,13 (66,6




Strategies in Subgames

* Consider a strategy profile
(L1, R4), L2, R3)in G

* |ts projectionto G’ is
(R4, L2, @) and its projection
to G is (@, @, R3)

* Generally,ifs=(a,, ..., a,)
is a strategy of playeriin G,
and G’ is a subgame of G,
then the projection of s to G
consists of all actions in s (11 5)
associated with nodes of G’

4

(6, 6, 6)



Subgames and Nash Equilibria

Given an extensive-form game G, let
N(G) be the associated normal-form game.
s =(sy, ..., s,,) be a Nash equilibrium of N(G)

— s, is the strategy of player i

Pick a subgame G’ of G

ss aNEin N(G")?

G

Not al |
ot always 1

GI

=

=

N(G)

N(G’)

let s'=(s", ..., s’,) be projection of s on G’

=

=)




Equilibria in Subgames: an Example

* (S, F)is a Nash equilibrium in N(G)

* The projection of (S, F) to
the left subgame G’ is (@, F)

* (@, F)is nota NE in N(G’):

— Firm 1 can profit by (-1, -1)
deviating to A
A F
N(G)
NG) A F e A

(1,1) | (-1, -1) (0, 2) | (O, 2)




Subgame-Perfect Equilibria

e Definition: Consider
— G: an extensive-form game,
— N(G): the corresponding normal-form game,
— s:a NE of N(G).

Then s is said to be a subgame-perfect NE (SPNE) if its
projection onto any subgame G’ of G is a NE of N(G’)

* Why do we care for such strategy profiles?

 They are robust against any “change of plan”

— At ANY node, every player is playing an optimal strategy
against the projection of s, on the subgame starting
from that node




Subgame-Perfect Equilibria

 Theorem: the output of backward
induction is a subgame-perfect NE

* |ntuition: backward induction proceeds
subgame by subgame, finding an
“optimal” solution in each




Corollaries

 Agameiis finite if the tree has finite depth and the
outdegree of each node is finite

 Corollary 1: In a finite game a pure SPNE always exists
— unlike pure NE in normal-form games

e Corollary 2: Consider a finite 2-player 0-sum extensive-
form game with outcomes {win, lose, tie}. Then:

— Either one of the players has a winning strategy
— Or both have a strategy that can guarantee a tie
— But it is often hard to tell which of the two applies!

— Examples: tic-tac-toe (we can guarantee a tie), chess (open
problem), ...




Backward Induction: Handling Ties

* Suppose at some node, 2 or more branches
lead to maximal payoff for the player who is
choosing an action

 Then both lead to (distinct) SPNE

* |f we want to find all SPNE, we need to

explore all optimal choices at each node
during the backward induction process

L1 R1
(L2, L3), R1
L2 R2 L3 R3

(R2, L3), L1
(1, 3) (3,3) (2,1) (2, 0)



Bayesian Games



Games with Imperfect Information

e So far, we have assumed that the players

know each others’ payoffs for all strategy
profiles

* However, this is not always the case:

— in Battle of Sexes, one player may be uncertain
that the other player enjoys their company

— In an auction, bidders may be uncertain about the
valuation of other participants



Example: Battle of Sexes

* Suppose P1 in uncertain whether P2 wants to go out with her:
— w.p. 1/2, P2 enjoys P1’s company e
— w.p. 1/2, P2 prefers to avoid P1’s company

* P2 knows whether he wants to go out with P1

(G 1 F ) & T F )
1 @21 00 120 2

G 0,0) | (1,2) )L (0,1) | (1,0) J

\ Pr=1/2 Pr=1/2 —

e 2 possible states of the world
— P2 knows the state, P1 does not



Strategies

| believe that if Charlie wants to go out,
he’ll choose T, else he’ll choose F, so
if | choose T, my expected payoff

willbe 2x1/2+0x1/251
)\

%@O

* Marcie’s strategy: T or F
* Charlie’s strategy: T or F

* However, when Marcie chooses her strategy, she needs to
form a belief about Charlie’s behavior in both states

— in her mind Charlie’s strategy is a pair (X, Y):
— X is what would Charlie do if he wants to meet her (T or F)
— Y is what would Charlie do if he wants to avoid her (T or F)



Strategies

* P2 (Charlie) can be of one of 2 types: “meet” or “avoid”

* When describing P2’s strategy, we need to specify
what each type of P2 would do

— P2 knows what type he is, so he only needs one
component of this description
— P1 (Marcie) needs both components to calculate her payoffs

* Expected payoffs of P1 for each possible strategy of P2:

(T, T) (T, F) (F, T) (F, F)
T 12.%42.%=2]2%+0-%=1| 0-%+2-%=1 | 0- % +0- % =0

F |0-%+40-%2=0|0-%2+1-%=% | 1-/4+0-72=0 | 1-/o+1-/2=1




* Alternative interpretation:

Strategies

— before the game starts, P2 does not know his type

— he needs to select his strategy for both types
— then he learns his type

* In the table below, (X, Y, Z) indicates that
— P1’s expected payoff is X,
— the payoff of the 1°' type of P2 (“meet”) is Y,
— the payoff of the 2" type of P2 (“avoid”) is Z

(T, T) (T, F) (F, T) (F, F)
T (2,1, 0) (1,1, 2) (1,0, 0) (0,0, 2)
F (0,0, 1) (%, 0, 0) (%, 2, 1) (1,2, 0)




Which Strategy Profiles Are Stable?

e Strategy profile: a list of 3 actions (a, b, c), where
— ais the action of P1
— b is the action of type “meet” of P2
— cis the action of type “avoid” of P2

* Intuitively, a strategy profile is stable if neither P1
nor any of the two types of P2 can increase their

expected payoff by changing their action

(T, T) (T, F) (F, T) (F, F)
T (2,1, 0) (1,1, 2) (1,0, 0) (0,0, 2)
F (0,0, 1) (%, 0, 0) (%, 2, 1) (1,2, 0)




Stable Profiles

* (T, T, F)isstable:
— if P1 deviates to F, her utility goes down to 1/2
— if type 1 of P2 deviates to F, his utility goes down to 0O
— if type 2 of P2 deviates to T, his utility goes down to O

* (T, T, T)is not stable:
— type 2 of P2 can deviate to F and increase his payoff by 2

(T, T) (T, F) (F, T) (F, F)
T 2,,00® (1,1,2) ©| (1,0,0) (0,0, 2)
F (0,0, 1) (%, 0, 0) (%, 2, 1) (1,2, 0)




Stable Profiles
(F, T, T), (F, T, F),and (F, F, T) are not stable:

— P1 can deviate to T and increase her payoff
(T, F, T) and (T, F, F) are not stable:
— type 1 of P2 can deviate to T and increase his payoff by 1

(F, F, F) is not stable:
— type 2 of P2 can deviate to T and increase his payoff by 1

(T, T) (T, F) (F, T) (F, F)
(2,,0) ® (1,1,2) © (1,0,0) ® (0,0,2) ®
(0,0,1) ®| (%,0,0) ® (4,2,1) ® (1,2,0) ®




T

F

Tweaking the Game

e |f Marcie thinks that “meet” or “avoid” are equally likely,
her payoffs are as follows:

(T, T)

(T, F)

(F, T)

(F, F)

2:- Vo 42-Y5=2

2- %40 =1

0-%+2- %=1

0-%40- % =0

0-72+40-7%2=0

0-%2+41- 7%=

1-2+0- 2=

1- % +1- %=1

“avoid” w. p. 1/3, her payoffs change:

(T, T)

(T, F)

(F, T)

 If she thinks that Charlie is of type “meet” w. p. 2/3 and

(F, F)

2:- %5 +2- =2

2:- % +0- 5 =1V

0-%+2- /=%

0-%4+40- % =0

0% +0- % =0

0-%+1-/5=7%

1- 7 40- /5 =%

1-%45+1- 5 =1




Stable Profiles in the Tweaked Game

* Charlie’s payoffs are the same as before
(T, T, F)is stable:

— e.g., if P1 deviates to F, her utility goes down to 1/2
 (F, F, T)is stable, too:

— e.g., if P1 deviates to T, her utility remains the same

* No other profile is stable

(T, T) (T, F) (F, T) (F, F)

T (2,1, 0) (1%4,1,2)©| (%,0,0) (0,0, 2)

- (0,0, 1) (14, 0, 0) (%,2,1)© (1, 2, 0)




Example: both P1 and P2 can be of type “meet” or “avoid”

//E -

)

1

0

F )

\_

-
71O @0 | % < 1100/ (22
£ | (1,0) ] (0,2) S S = | (1,1 | (0,0)
> Pr=1/2 Pr=1/2 |/
T F 1 T F [
71 @21 ] 00| 7 <1 ](20]I(02)
(FLOO | @.2) S S |01 @10 1,
Pr=1/2 Pr=1/2 -~/




Interpretation

Both P1 and P2 can be of type “meet” or of type
“avoid”

P1 knows her type, and believes that P2 is of type
“meet” w.p. 1/2 and of type “avoid” w.p. 1/2

P2 knows his type and believes that P1 is of type
“meet” w.p. 2/3 and of type “avoid” w.p. 1/3

P1 knows which of the red boxes she is in, but
cannot determine the state within the box

P2 knows which of the blue boxes he is in, but
cannot determine the state within the box




Types and States

In Bayesian games, each player may have
several types

— e.g., Charlie™ or Charlie®

A player’s type determines his preferences
over action profiles

— Charlie™ prefers (T, T) to (T, F)

A state is a collection of types

(one for each player)

— (Marcie”, CharlieM)

in each state, each player’s type is fixed

— i.e., each state corresponds to a payoff matrix



Types and States, Continued

* Each player knows his type, and has a probability
distribution over other players’ types

— Charlie knows he is of type “meet”,
and believes that Marcie is
of type “meet” w.p. 2/3, and of type “avoid” w.p. 1/3

* Each player’s strategy
prescribes an action for each of his types
— Charlie: T for CharlieM, F for Charlie?

 To compute expected payoffs, players take into
account the probability of each type



Bayesian Game: Definition

* A Bayesian game G is given by
— aset of players N ={1, ..., n}
— for each player i, a set of actions A,
— for each playeri, asetof typesT, |T,| =m

— for each type t of player i, a belief p; . about all
other agents’ types

® P, ; assigns probabilities to each vector
t.inT x...T.  XT ;X...XT,

— for each type t of player i, a payoff function U; . that
assigns a payoff to each vectorin A, x ... x A_

* G - (N’ Al, LI ) An’ T1’ LY ) Tn’ pl’ 1, LI ) pn’ m’ u1’ 1’ LI ) u

n, m)



Bayesian Games and
Normal Form Games

We can think of each type of each player as a
separate player who chooses his own action

G - E(G), where E(G) is a normal-form game
The set of playersin E(G)is N"=U., T.

— {CharlieM, Charlie”®, MarcieM, Marcie”}

For each player jin T., his set of actions is A,

What is the payoff of a player jinT,

for a given strategy profile?

— it must take into account the action and the
probability of each type of playersinU, .. T,
but not the actions of other playersin T.



Computing Utilities in E(G): Example

Consider the BoS game where both Marcie
and Charlie can be of both types (M and A)

Marcie believes that Charlie is

of type M w.p. 1/3, Aw.p. 2/3

Charlie believes that Marcie is

of type M w.p. 4/5, A w.p. 1/5

Then in the normal form game E(G) we have
— N’ = {MarcieM, Marcie”, CharlieM, Charlie*}

— Upreem(T, F, T, F)=1/3x2+2/3x0=2/3
—Uypo(T, T, T, F) = 1/3x2+2/3x0=2/3




Nash Equilibrium in Bayesian Games

* Definition: given a Bayesian game G, a
strategy profile s (with one action for each
type of each player in G) is said to be a Nash
equilibrium of G if it is a Nash equilibrium of
the respective normal-form game E(G)

— no type of any player should want to change his
action given the actions of all types of other

players




Example: Battle of Sexes

Marcie: “meet” w.p. 4/5, “avoid” w.p. 1/5
Charlie: “meet” w.p. 3/4, “avoid” w.p. 1/4

CharlieM payoffs: best response:
u(T, T, T, *)=1, u(T,T,F, *)=0 (T, T)=>T
u(T,F, T, *)= 4/5, u(T, F, F, *)=2/5 (T,F)=> T
u(F, T, T, *)=1/5, u(F, T, F, *)=8/5 (F, T)> F
u(F, F, T, *)=0, u(F,FF *)=2 (F, F) > F
Charlie® payoffs:

u(T, T, *, T)=0, u(T,T,* F)=2 (T, T)=>F
u(T,F, *, T)= 1/5, u(T, F, *, F) = 8/5 (T,F) > F
u(F, T, *, T)=4/5, u(F, T, *, F) =2/5 (F, T)=>T

u(FI FI *I T) = 1’ u(FI FI *I F) = O (FI F) % T



Example: Battle of Sexes

Marcie: “meet” w.p. 4/5, “avoid” w.p. 1/5
Charlie: “meet” w.p. 3/4, “avoid” w.p. 1/4

MarcieM payoffs: best response:
u(T, *, T, T)=2, u(F,* T,T)=0 (T, T)=>T
u(T, ™, T,F)=3/2, u(F, *, T,F)=1/4 (T,F)=>T
u(T, *, F, T)=1/2, u(F, *,F, T)=3/4 (F, T)>F
u(T, *, F,F)=0, u(F,* F F)=1 (F,F) > F
Marcie” payoffs:

u(*, T, T,T)=0, u(*FT,T)=1 (T, T)>F
u(*, T, T,F)=1/2, u(*, F, T,F)=3/4 (T,F) > F
u(*, T,F, T)=3/2, u(*, F,F, T)=1/4 (F, T)=>T

u(*l TI FI F) = 2’ u(*l FI FI F) = O (FI F) % T



Example: Battle of Sexes

* Best response:

CharlieM :
(T, T)>T
(T,F)=>T
(F, T)> F
(F, F) > F

MarcieM :
(T, T)=>T
(T,F) > T
(F,T)=>F
(F,F)>F

Charlie? :
(T, T) > F
(T,F) > F
(F, T)=>T
(F,F)=> T

Marcie” :
(T, T) > F
(T,F) > F
(F, T)>T
(F,F)=> T

Charlie:

(T, T) > (T, F)
(T, F) = (T, F)
(F, T)=> (F, T)
(F, F) > (F, T)

Marcie:

(T, T) > (T, F)
(T, F) > (T, F)
(F, T)=> (F, T)
(F, F) > (F, T)



Example: Battle of Sexes

* Marcie: “meet” w.p. 4/5, “avoid” w.p. 1/5
* Charlie: “meet” w.p. 3/4, “avoid” w.p. 1/4
* Best responses:

Charlie: Marcie

(T, T) = (T, F) (T, T)=> (T, F)
(T, F) > (T, F) (T, F) > (T, F)
(F, T)=> (F, T) (F, T)=> (F, T)
(F, F) > (F, T) (F, F) - (F, T)

* Nash equilibrium: (T, F, T, F), (F, T, F, T)



lllustration: First-Price Auctions With
Incomplete Information

* First-price auction:

— one object for sale, each bidder assigns
some value to it

— each bidder submits a bid
— the bidder who submitted the highest bid
wins the object and pays his bid
* Typically, bidders do not know each others’
values; rather, they have beliefs about each
others’ values



First-Price Auction With
Incomplete Information

* Alice and Bob bid for a painting

* Alice believes that Bob values the painting as
S100 w.p. 1/5, S200 w.p. 4/5

* Bob believes that Alice values the painting as
S$120 w.p. 2/5, S150 w.p. 3/5
* Bayesian game:
— types = values
({$100, $200} for Alice, {$120, $150} for Bob)
— actions = bids (non-negative reals)
— strategy: how much to bid for each type



Infinite Type Spaces

* So far, we considered games where each player
has a finite number of types

* However, the number of types may be infinite:

— Cournot oligopoly:
the cost can be any real number
in some interval [c,, ¢, ]

— first-price auction:
Alice’s value can be any real number
between 100 and 200

 Warning: the associated normal-form game E(G)
has infinitely many players, and we have not
formally defined Nash equilibria for such games

— however, the definition can be extended




Infinite Type Spaces: Strategies and

Beliefs
* |f a player’s type spaceis asetT,

and her action space is A,

her strategy is a mapping T = A

— Battle of Sexes: {meet, avoid} — {T, F}

— Cournot oligopoly with costs c,, ¢,: {c,, ¢,} = R

— Cournot oligopoly with costs in [c,, ¢,]: [c;, ¢,] = R
* Players assign probabilities to other players’ types:

in a 2-player game

— player 1 believes that player 2’s type is drawn from T,

according to a distribution F,

— player 2 believes that player 1’s type is drawn from T,
according to a distribution F,



First Price Auction With Two Bidders

First-price auction, 2 bidders

each bidder’s valueis in [0, 1]

- T,=T,=10, 1]

Each bidder knows his value and assumes that the
other bidder’s value is drawn from the uniform
distribution on [0, 1]:

— U[0, 1]: CDF F(x) = x, PDF f(x) = 1 for x € [0, 1]
Proposition: for each bidder,

bidding half of his value is a NE strategy

— i.e., assuming that bidder 2 bids v,/2 (whatever v, is),
bidder 1 maximizes his expected utility by bidding v, /2,
for every v, € [0, 1], and vice versa




Example:
First Price Auction With Two Bidders

* Proposition: for each bidder,
bidding half of his value is a NE strategy

* Proof: suppose B1 has value v;
let us compute his optimal bid b
— suppose B2 bids b, = v,/2
—b,<1/2,sowe can assume that b <1/2 as well
—Pr[b, £x] =Pr[v, £2x] =2xforx<1/2
— when B1 bids b <1/2, Pr [B1 wins] =Pr [b, < b] = 2b

— B1’s expected utility = 2b(v, - b):
maximized at b = v,/2



