
Agent Oriented Software Engineering

Michael Winikoff and Lin Padgham

Chapter 15 of
Multiagent Systems

Edited by Gerhard Weiss

MIT Press, 2012
http://www.the-mas-book.info/

Introduction

•  Agent Oriented Software Engineering
(AOSE) concerned with engineering
aspects of developing MAS.

•  Focus on methodologies and tools
•  This chapter aims to:

1.  Give a sense for what an AOSE
methodology looks like.

2.  Describe the current state of work in the
area of AOSE.

Methodology
•  Methodology includes:

– overall process
– which produces design artefacts (“models”)
– notation used to capture the models
–  techniques (i.e. how to do things – heuristics)
– underlying concepts
–  tool support very valuable, but not focus of chapter

•  Activities follow typical development life cycle:
requirements, design, implementation, assurance,
maintenance
– … but typically done iteratively, not sequentially (i.e.

not waterfall)

History of AOSE: Three Generations

1.  mid to late 90s
–  Examples: DESIRE, AAII,

MAS-CommonKADS, Gaia
–  Generally briefly described
–  Lacking tool support
–  May not cover full life cycle

2.  late 90s to early 00s
–  Examples: MaSE, Tropos, MESSAGE,

Prometheus
–  More detailed descriptions
–  Tend to have tool support
–  Tend to cover Requirements to Implementation

3.  mid to late 00s
–  Examples: PASSI, INGENIAS, ADEM
–  Increased focus on UML and Model-Driven Development
–  Tend to be more complex

4 Chapter 15

(Section 11).
Finally, an apology: we have tried to strike a balance between covering the

various approaches which are currently well established, without unduly cluttering
the chapter by trying to mention all of the more than 50 AOSE methodologies
which can be found in the literature. To the extent that we may not have succeeded
completely in making the right judgments, we extend our apology to any authors
whose work may have been unjustly omitted.

1.1 History of AOSE

Figure 15.1 gives a rough timeline in terms of the development of prominent
AOSE methodologies. We intentionally do not present a detailed figure with a
complete list of methodology, and indications of influences. Constructing such a
figure is difficult, and every single such figure that we have seen in other papers
contains significant errors. More importantly, a cluttered figure with dozens of
methodologies is not particularly useful in gaining insight.

Year Methodologies
1995 DESIRE
1996 AAII, MAS-CommonKADS
1999 MaSE
2000 Gaia (v1), Tropos
2001 MESSAGE, Prometheus
2002 PASSI, INGENIAS
2003 Gaia (v2)
2005 ADEM
2007 O-MaSE

Figure 15.1: A Brief History of AOSE

The list of methodologies in Figure 15.1 includes those methodologies that we
feel can be argued to be significant. We consider a methodology to be significant
if it either influenced subsequent methodologies in a significant way, or if it was
significant in its own right (e.g. widely adopted, mature, with tool support). Note
that we excluded methodologies which were only described in a single paper,
which includes some of the early pioneering work. A description of some of the

Historical Observations

• Reduced focus on developing new
methodologies

• Reduction over time in number of actively
developed methodologies

• … increased focus on standardisation and
consolidation?

Agent Concepts

•  Agents defined as having certain
properties

• Design agents with these properties
using supporting concepts

6 Chapter 15

cent work on developing new AOSE methodologies: the prominent and significant

second and third generation methodologies are well developed and supported, and

it is hard to justify developing yet another methodology.

The second key observation concerns diversity and convergence. In the early

years of work on AOSE methodologies there was a lot of diversity and dozens of

methodologies. Over the years, most of these methodologies have faded away,

and a smaller number of methodologies which have seen significant work — and

typically the development of tool support — have remained active and prominent.

More recently, there is increasing awareness of the drawback of diversity, and the

need to standardise (e.g. [60]), or at least, to try and reduce unnecessary differ-

ences between methodologies (e.g. [97]). Looking forward, we might expect the

future of AOSE research to focus on consolidation and standardisation, rather than

on the development of more methodologies. See Section 11 for further discussion

of future directions.

2 Agent Concepts

As discussed earlier in this book (see Chapter 1), agents are defined as having

certain properties, such as being proactive, and situated in an environment. In

order to design systems of agents that have these properties, we need to use certain

design concepts. For example, one way of designing agents that display proactive

behaviour is to model, design and implement them in terms of the concept of

goals. We now consider in turn each of the defining properties of agents, and

which concepts can be used to support the design and implementation of agents

that posess a given property. The properties and concepts used to support them

are summarised in Figure 15.2.

Property Supporting Concepts
Situated Action, Percept

Proactive & Autonomous Goal

Reactive Event

Social Message, Protocol . . .

Figure 15.2: Relationship between properties and supporting concepts

Agent Concepts

• Design situated agents by modeling
interface with environment in terms of
actions and percepts

• Design proactive and autonomous
agents using goals

•  Achieve reactivity using events
•  Agents interact with each other (social)

using messages and protocols

Example: Holonic Manufacturing

robot1
(loads &
unloads)

A buffer

B buffer

C buffer

robot2
(joins)

flipper

rotating table

jig 1 jig 2

Goal: Assemble “A”, “B” and “C” parts
into a composite “ABC” part.

Process for making an “ABC” part

1.  robot1 loads an A part into one of the jigs on the rotating table
2.  robot1 loads a B part on top of it
3.  the table rotates so the A and B parts are at robot2
4.  robot2 joins the parts together, yielding an “AB” part
5.  the table rotates back to robot1
6.  if an AB part is required, robot1 unloads the part, else continue
7.  robot1 moves the AB part to the flipper
8.  the flipper flips the part over (“BA”) at the same time as robot1

loads a C part into the jig
9.  robot1 loads the BA part on top of the C part
10.  the table rotates
11.  robot2 joins the C and BA parts, yielding a complete ABC part
12.  the table is rotated, and
13.  robot1 then unloads the finished part.

Actions and Percepts in the
Holonic Manufacturing Example

Robot1:
•  percept: manufacture

(composite)
•  load(part) into jig
•  unload()
•  moveToFlipper()
•  moveFromFlipper()

Robot2:
•  join(jig): join the bottom

part to the top part

Flipper:
•  flip() the item in the

flipper

Table:
•  rotateTe(jig, position)

REQUIREMENTS

Requirements

•  Requirements concerned with defining the
required functionality of the system-to-be.

•  Commonly used activities:
– specifying instances of desired behaviour using

scenarios
– capturing system goals and their relationships
– defining the interface between the system-to-be

and its environment
•  These activities are typically done in parallel

in an iterative manner
•  Some methodologies define roles …

Roles
•  Coherent grouping of related goals, percepts, actions
•  Example:

–  manager: this role is responsible for overall management of the
manufacturing process. It does not perform any actions.

–  pickAndPlacer: this role is responsible for moving parts in and
out of the jig when it is located on the East side of the table.
Associated actions are: load, moveToFlipper, moveFromFlipper,
unload

–  fastener: this role is responsible for joining parts together.
Associated action: join.

–  transporter: this role is responsible for transporting items by
rotating the table. Associated action: rotateTo.

–  flipper: this role is responsible for flipping parts using the “flip”
action.

Requirements: Scenarios

•  Similar to OO use
cases, but more
details in some
methodologies

•  Structure and format
varies

•  Example (right) shows
goals and actions,
along with the roles

12 Chapter 15

Scenario: manufacturePart(ABC)
Type Name Roles
G build2 manager, pickAndPlacer, fastener

G decideParts manager
G loadPart pickAndPlacer

A load(A) pickAndPlacer
G loadPart pickAndPlacer

A load(B) pickAndPlacer
G fastenParts fastener, transporter

A rotateTo(1,W) transporter
A join(1) fastener

G addPart manager, pickAndPlacer, fastener
G decideNext manager
G flipOver manager

A rotateTo(1,E) transporter
A moveToFlipper() pickAndPlacer
A flip() flipper

G loadPart pickAndPlacer
A load(C) pickAndPlacer [in parallel with flip]
A moveFromFlipper() pickAndPlacer

G fastenParts fastener, transporter
A rotateTo(1,W) transporter
A join(1) fastener

G complete manager
G assess manager
A rotateTo(1,E) transporter
A unload() pickAndPlacer

Figure 15.4: Scenario Steps

in a structured format as a sequence of steps, where each step is an action, per-
cept, goal or sub-scenario, performed by a given role, and accessing certain data.
As an example, a scenario for the Holonic manufacturing system is depicted in
Figure 15.4. As can be seen, each step is described in a structured way, showing
the type of each step (G for Goal, A for Action), the name of the action or goal
(e.g. “build2”), and which roles are involved. We use the following five roles in

Requirements: Goals

•  Capture goals of system
•  Is complementary to scenario

– not specific to a given trace, but doesn’t capture
sequencing.

•  Extract initial goals from the scenario
•  Refine by asking “why?” (gives parent goal)

and “how?” (gives child goals)
•  Results in goal model, e.g. goal tree

– Some methodologies have richer notations
– Example (next slide) also shows actions

Example Goal Model

14 Chapter 15

that the use of goals for requirements is motivated both by the fact that agents are
defined in terms of goals, but also by evidence (from non-agent work) that goals
are a good way to model requirements [123].

Creating a goal model can be done by identifying certain goals from the sce-
narios, and then refining them. One technique for refinement is asking “why” a
particular goal is achieved, which identifies its parent goal, and “how” a particular
goal is achieved, which identifies its subgoals [123]. Another technique is to con-
sider how goals influence other goals. In the case of the Holonic manufacturing
system the goal model is actually quite simple. One possible goal model might be
defined by beginning with a top-level goal (“manufacturePart”) and asking how
the goal is achieved, leading to the identification of subgoals. Asking why regard-
ing an identified goal can lead to identification of motivating goals which in turn
leads to identification of additional subgoals. For example asking why for manu-
facturePart could lead to identifying a goal of filling orders which in turn leads to
identification of subgoals to obtain orders and prioritise orders.

Key

<load(X)> <join(jig)> <rotateTo(jig,pos)> <moveToFlipper> <flip><moveFromFlipper> <unload>

manufacturePart

build2 addPart complete

decideParts loadPart fastenParts decideNext flipOver assess

goal<action>

Figure 15.5: Simple Goal Model

Some methodologies capture the goal model using a tree structure where each
goal has as children its subgoals. Other methodologies use more sophisticated
models which can capture the influences between goals, e.g. that one goal in-
hibits or supports the achievement of another goal [15]; or that particular goals
are triggered by certain events [53]. Figure 15.5 shows a simple goal model for
the Holonic manufacturing system. This goal model does not show dependencies
between goals, other than the parent-child relationship (depicted by an arrow from

Requirements: Environment

•  Specify interface to environment in terms of
actions and percepts

•  May be pre-determined by problem
– e.g. robot capabilities in Holonic Manufacturing

•  Overlap exists between the three models
(scenarios, goals, environment interface).

•  Hence each model influences the others …

Variations on requirements

•  Some methodologies have an early
requirements phase that captures the context
of the system-to-be in terms of stakeholders,
and their goals and dependencies.

•  Capturing domain concepts (“ontology”) is
important – can use UML class diagrams,
Protégé …

•  Some work has proposed richer
environmental models (e.g. chapters 2 and
13)

DESIGN

Design

• Design aims to define the overall structure
of the system by answering:
– What agent types exist, and what (roles and)

goals do they incorporate?
– What are the communication pathways

between agents?
– How do agents interact to achieve the

system’s goals?

Design

•  Two key models:
– a static view of the system’s structure, and
– a model that captures the dynamic behaviour

of the system.
•  Also capture shared data.

“What agent types exist?”

•  Common technique is to consider grouping of
smaller “chunks” (e.g. roles), taking into
account:
– the degree of coupling between agents,
– the cohesiveness of agent types, and
– any other reasons for keeping “chunks” separate

(e.g. deployment hardware, security, privacy)
•  No single “right” answer – technique is about

identifying tradeoff points.

“What agent types exist?”

In the Holonic Manufacturing example:
• Natural to have each robot be a separate

agent …
• … but assign pickAndPlacer and manager

roles to Robot1

18 Chapter 15

scenario it is natural to have each robot represented as a separate agent type. In-
deed, this is the basically the approach that we adopt. The manager role we also
include in Robot1 as the manager role is making the decisions about what to load
and when to unload, which are closely associated with the pickAndPlacer role. If
we were including an agent which coordinates the whole system of cells, we may
have decided to put the manager role in that agent. However, in our small example
we assign the manager role to the Robot1 agent. Assigning goals to agent types
can be done based on the assignment of goals to roles, or may be done during the
process of determining agent types. In this case, the assignment is based on the
assignment of goals to roles (see Figure 15.4). Where goals that have subparts are
assigned to an agent that does not itself do all the subparts, then the responsible
agent will need to request other agents to do the necessary subparts. An example
is the goal flipOver which is assigned to Robot1, who will need to request as-
sistance from Table and FlipperRobot to do the actions required for this subgoal.
Similarly, the goal fastenParts, which is assigned to both the fastener and trans-
porter role, is assigned to a single agent (Robot2, which is assigned the fastener
role).

Role Agent Type Goals and Actions3

pickAndPlacer → Robot1 loadPart, load, unload,
moveToFlipper, moveFromFlipper

manager → Robot1 decideParts, decideNext, flipOver, assess
transporter → Table rotateTo
fastener → Robot2 fastenParts, join
flipper → FlipperRobot flip

We also need to define how the agents interact with the environment. That is,
which actions and percepts each agent deals with? If these have been assigned to
roles, then they are simply assigned to the appropriate agent along with the role.
In our example the actions were pre-defined based on the hardware, as specified
on page 3. We must also ensure that each percept is handled by some agent. In
our example we have the manufacture(composite) percept. We could assign this
to Robot1 (which performs the first action in the sequence needed to assemble a
part), or alternatively we could introduce a new agent type, Coordinator, which
manages which parts will be manufactured in which cells, etc. However, to keep
our example simple, we assign this percept to Robot1.

3Actions are shown in italics.

italics = actions

System (static) structure

•  Specified using System Overview Diagram
•  First, derive goals, action and percept

assignment.
– Derived from the role-agent assignment: a

role’s goals, actions and percepts are
assigned to the agent that plays that role.

•  Then consider communication …

System Dynamics

•  Captured using interaction protocols
•  Process:

– Begin with scenarios
– Insert messages where communication is needed

(i.e. when step N by agent A is followed by step
N+1 by a different agent)

– Generalise: “what else could happen here?”,
“what could go wrong?”

•  Agent UML (AUML) sequence diagrams often
used for depicting interaction protocols.

Holonic Manufacturing Protocols

Top level protocol
shows manufacturing
process:

•  initial loading of two
parts and joining them

•  then repeatedly
adding a part and
fastening it

•  finally, unload the
result

Robot1 Robot2 Table FlipperRobot

unlock

loop

unlock

ManufacturePart

ref Lock(R1,jigE)

<load>

<load>

ref Fasten

ref AddPart

ref Fasten

ref Lock(R1,jigE)

<unload>

Fasten Protocol

•  Fasten protocol simply involves a request
(from Robot1 to Robot2) to fasten.

• Robot2 then locks the table, performs the
join action, and informs Robot1

Robot1 Robot2 Table

fasten(jig)

fastened(jig) unlock

Fasten

ref Lock(R2,jigW)

<join(jig)>

Robot1 Table FlipperRobot

flipRequest

flipped

opt

par

unlock

AddPart

ref Lock(R1,jigE)

<moveToFlipper>

<flip>

<load>

<moveFromFlipper>

AddPart Protocol
AddPart protocol shows:
•  the table being locked
•  then the existing part is

moved to the flipper
•  then the new part is

loaded (and, optionally,
the old part is flipped at
the same time (“par”))

•  and then the old part is
moved back

Note that showing actions in the protocol (e.g. “<load>”) is
needed to show clearly what’s going on.

Robot Table

lock-at(Jig, Pos)

lockFailed

opt

locked-at

alt

loop until locked

Lock(Jig)

[table locked]

else

<rotateTo(Jig,Pos)>

Lock Protocol

•  The Lock protocol is a
simple request-
response (“please
lock”, “ok”) …

•  … extended to deal
with failure (by
retrying),

•  and with an optional
rotation to the desired
position

System Overview Diagram

• Having developed the protocols, we can
now capture the system’s (static) structure
using a System Overview Diagram (next
slide)

• May also need to define shared data at
this point.

System Overview Diagram

>manufacture<
Robot1

<load(X)>

<join(jig)> <rotateTo(jig,pos)> <flip>

<moveFromFlipper>

<unload>

<moveToFlipper>

Robot2 Table Flipper
Robot

Lock

Lock

AddPart Fasten

Key:
<action>

agent

>percept<

Protocol
Unlock

Message

DETAILED DESIGN

Detailed Design
•  Detailed design aims to specify the internal

structure of each agent, so that implementation
can be done.

•  Do this by starting with each agent’s interface
(messages sent/received, actions, percepts,
goals) and defining its internals.

•  To do this, need to know the target implementation
platform type

•  We consider two examples:
– A Belief-Desire-Intention (BDI) platform
– A design using a Finite State Machine (FSM) targeting

JADE

Example: Robot1

•  We know that Robot1:
– participates in the protocols: AddPart, Lock,

Fasten
– has actions: load, unload, moveToFlipper,

moveFromFlipper
– receives percept manufacture
– has goals: loadPart, decideParts, decideNext,

flipOver
•  What plans and internal events does Robot1

need to play its part?

BDI Platform Design

•  BDI platforms define an agent in terms of a
collection of plans that are triggered by
events (or messages).
– Each event may trigger more than one plan –

which plan to use is determined by the plan’s
context condition

•  To capture detailed design use an Agent
Overview Diagram for each agent type
– This shows plans, events, messages, percepts

and actions; and the relationships between them

Example: Initial Structure

•  Start by creating a plan to handle the percept
•  This plan then posts events corresponding to the

subgoals
•  Each of these events needs a plan to handle it

>manufacture<
manufacture

PartPlan

build2 add
Part

build2Plan addPartPlan complete
Plan

plan

<action>

>percept<

event

Key:

compl
ete

Example: developing build2

>manufacture<
manufacture

PartPlan

build2

<load(X)>

add
Part

fasten(jig)

unlock build2Plan addPartPlan

decide
Parts

decideParts
Plan

message

plan

<action>

>percept<

event

Key:

complete
Plan

compl
ete

lock-at

•  The build2Plan posts events corresponding to its
subgoals – loadPart simply becomes the action load

•  Since the fastenParts subgoal is performed by Robot2,
instead of posting an internal event, send a message
(to Robot2)

•  Also need to lock and unlock, so add these messages

Example: addPart and complete

>manufacture< manufacture
PartPlan

build2

<load(X)> <moveFromFlipper>

<unload>

<moveToFlipper>

add
Part fasten(jig)

unlock build2Plan addPartPlan

flip
Over

flipOverPlan

decide
Parts

decideParts
Plan

flipRequest

flipped

complete
Plan

message

plan

<action>

>percept<

event

Key:

lock-at

compl
ete

decide
Next

decideNext
Plan

•  addPart has subgoals loadPart, fastenParts,
decideNext and flipOver – add them.

•  add messages in line with the interaction
protocols

•  subgoal “assess” is
handled by a suitable
context condition on
the completePlan

Example: final BDI design

•  Check that all messages that Robot1 should
be able to send or receive are in the detailed
design
– sent: lock-at, fasten, flipRequest, unlock - all

present in design
– received messages missing: lockFailed, locked-

at, fastened, flipped – add, and ensure there is a
plan that deals with each incoming message.

•  Use capability to encapsulate lock
management

Final BDI Design for Robot1
>manufacture< manufacture

PartPlan

build2

<load(X)> <moveFromFlipper>

<unload>

<moveToFlipper>

add
Part fasten(jig)

unlock build2Plan addPartPlan

flip
Over

flipOverPlan

decide
Parts

decideParts
Plan

flipRequest

flipped

complete
Plan

message

plan

<action>

>percept<

event

Key:

decide
Next

decideNext
Plan

lockCapability

lock-at
(jig,pos)

fastened(jig)

continue

Approach II: FSM

• Derive internal process for Robot1 by
identifying states of interaction (gaps
between messages in the protocols)
– messages are transitions between states
– compress interactions that don’t involve

Robot1 (e.g. Robot2 and Table locking the
table in the Fasten protocol)

Final FSM Design for Robot1

load(A)

load(B)

receive(fastened(jig))

/send(flipRequest)

receive(flipped)

/send(unlock)

/send(fasten(jig))

Wait
moveToFlipper

moveFromFlipper

load(C) Wait

unload

receive(manufacture(part))

/send(lock-at(Jig,Pos))

Assess

receive(locked-at)

/send(unlock)

Wait

receive(lockFailed)

Implementation

•  Mapping detailed design to implementation
generally done manually

•  Some design tools can generate skeleton
code in an agent-oriented programming
language

•  Some work on round-trip engineering exists
•  Some work has been done on model driven

development of agent systems
– implementation generated from design
– … but design expands to include additional

information to make this possible …

Assurance

•  Support for this is less well developed than
support for “core” activities (requirements,
design, detailed design).

• Much of the work in testing and debugging
uses information created during design
– e.g. using interaction protocols to monitor

system execution

Testing and Debugging

•  Testing agents is hard: concurrent
systems, with goal-directed flexible
behaviour …

•  Testing takes places at different levels:
units, modules, integration, system, and
acceptance

•  Testing has different aspects: test case
design, execution, and checking of test
results.

Testing and Debugging (2)

• Most well developed contemporary
methodologies provide some support for
automated execution of tests, and
checking test results.

• … but test case generation is usually
manual

Testing and Debugging (3)

•  Tropos has a tool (eCAT) that provides
support for test case generation
– This uses ontologies to generate message

content
•  Prometheus has work on test case

generation

•  But is a given set of tests adequate?

Testing Adequacy

• Given the complexity of agent systems, a
set of tests may not be adequate

•  There has been some work on adapting
existing notion of code coverage to agents

•  But this work is not yet used in agent
testing tools

Formal Methods
•  The difficulty of testing agent systems has

motivated the development of formal methods
•  Formal methods use mathematical techniques to

prove that a system is correct (with respect to its
formalised specification)

•  Much of the work uses model checking, where an
(often abstract) model of the system is
systematically checked against a specification

•  But current state-of-the-art is still limited to very
small programs (e.g. six line contract net with
three agents)

Software Maintenance

•  Once software has been deployed, it is
subject to further change, such as:
– adapting to changes in its environment
– adding new functionality

•  Only one piece of work that has looked at
maintenance of agent systems

•  Dam et al. focused on change propagation in
design models: given a change to a design
model, what other changes are needed to
restore consistency of the model?

Comparing Methodologies
•  In the early days of the field there were many

methodologies
•  This prompted work (around 2001-2003) on comparing

methodologies
•  Typical approach was feature based:

– Define a list of features of interest
– Assess each methodology against each feature, resulting

in a large table
•  Unfortunately this approach suffers from subjectivity

– … in some cases even the authors of a methodology didn’t
agree on how to rate their methodology on given criteria!

Conclusions

•  Areas for further research:
– Understanding the benefits of the agent paradigm
– Designing flexible interactions
– Extending methodologies to deal with systems

• … that have complex and dynamic organisational
structure

• … that have many simple agents with emergent
behaviour

• … that are an open society of agents

– Techniques for assurance of agent systems

Conclusions

•  Areas for further work (not research):
– Standardisation of methodologies

• Reduce unnecessary differences between
methodologies

• Enable reuse of tool development, rather than
duplicated effort

• One approach that has been proposed is method
engineering

– Integration of agent practices, standards and
tools with mainstream

