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Introduction 

•  Agent Oriented Software Engineering 
(AOSE) concerned with engineering 
aspects of developing MAS. 

•  Focus on methodologies and tools 
•  This chapter aims to: 

1.  Give a sense for what an AOSE 
methodology looks like. 

2.  Describe the current state of work in the 
area of AOSE. 



Methodology 
•  Methodology includes:  

– overall process  
– which produces design artefacts (“models”) 
– notation used to capture the models 
–  techniques (i.e. how to do things – heuristics)  
– underlying concepts 
–  tool support very valuable, but not focus of chapter 

•  Activities follow typical development life cycle: 
requirements, design, implementation, assurance, 
maintenance   
– … but typically done iteratively, not sequentially (i.e. 

not waterfall) 



History of AOSE: Three Generations 

1.  mid to late 90s 
–  Examples: DESIRE, AAII,  

MAS-CommonKADS, Gaia 
–  Generally briefly described 
–  Lacking tool support 
–  May not cover full life cycle 

2.  late 90s to early 00s 
–  Examples: MaSE, Tropos, MESSAGE,  

Prometheus  
–  More detailed descriptions 
–  Tend to have tool support 
–  Tend to cover Requirements to Implementation 

3.  mid to late 00s 
–  Examples: PASSI, INGENIAS, ADEM 
–  Increased focus on UML and Model-Driven Development 
–  Tend to be more complex 
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(Section 11).
Finally, an apology: we have tried to strike a balance between covering the

various approaches which are currently well established, without unduly cluttering
the chapter by trying to mention all of the more than 50 AOSE methodologies
which can be found in the literature. To the extent that we may not have succeeded
completely in making the right judgments, we extend our apology to any authors
whose work may have been unjustly omitted.

1.1 History of AOSE

Figure 15.1 gives a rough timeline in terms of the development of prominent
AOSE methodologies. We intentionally do not present a detailed figure with a
complete list of methodology, and indications of influences. Constructing such a
figure is difficult, and every single such figure that we have seen in other papers
contains significant errors. More importantly, a cluttered figure with dozens of
methodologies is not particularly useful in gaining insight.

Year Methodologies
1995 DESIRE
1996 AAII, MAS-CommonKADS
1999 MaSE
2000 Gaia (v1), Tropos
2001 MESSAGE, Prometheus
2002 PASSI, INGENIAS
2003 Gaia (v2)
2005 ADEM
2007 O-MaSE

Figure 15.1: A Brief History of AOSE

The list of methodologies in Figure 15.1 includes those methodologies that we
feel can be argued to be significant. We consider a methodology to be significant
if it either influenced subsequent methodologies in a significant way, or if it was
significant in its own right (e.g. widely adopted, mature, with tool support). Note
that we excluded methodologies which were only described in a single paper,
which includes some of the early pioneering work. A description of some of the



Historical Observations 

• Reduced focus on developing new 
methodologies 

• Reduction over time in number of actively 
developed methodologies 

• … increased focus on standardisation and 
consolidation? 



Agent Concepts 

•  Agents defined as having certain 
properties 

• Design agents with these properties 
using supporting concepts 
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cent work on developing new AOSE methodologies: the prominent and significant

second and third generation methodologies are well developed and supported, and

it is hard to justify developing yet another methodology.

The second key observation concerns diversity and convergence. In the early

years of work on AOSE methodologies there was a lot of diversity and dozens of

methodologies. Over the years, most of these methodologies have faded away,

and a smaller number of methodologies which have seen significant work — and

typically the development of tool support — have remained active and prominent.

More recently, there is increasing awareness of the drawback of diversity, and the

need to standardise (e.g. [60]), or at least, to try and reduce unnecessary differ-

ences between methodologies (e.g. [97]). Looking forward, we might expect the

future of AOSE research to focus on consolidation and standardisation, rather than

on the development of more methodologies. See Section 11 for further discussion

of future directions.

2 Agent Concepts

As discussed earlier in this book (see Chapter 1), agents are defined as having

certain properties, such as being proactive, and situated in an environment. In

order to design systems of agents that have these properties, we need to use certain

design concepts. For example, one way of designing agents that display proactive

behaviour is to model, design and implement them in terms of the concept of

goals. We now consider in turn each of the defining properties of agents, and

which concepts can be used to support the design and implementation of agents

that posess a given property. The properties and concepts used to support them

are summarised in Figure 15.2.

Property Supporting Concepts
Situated Action, Percept

Proactive & Autonomous Goal

Reactive Event

Social Message, Protocol . . .

Figure 15.2: Relationship between properties and supporting concepts



Agent Concepts 

• Design situated agents by modeling 
interface with environment in terms of 
actions and percepts 

• Design proactive and autonomous 
agents using goals 

•  Achieve reactivity using events 
•  Agents interact with each other (social) 

using messages and protocols 



Example: Holonic Manufacturing 

robot1  
(loads & 
unloads) 

A buffer 

B buffer 

C buffer 

robot2  
(joins) 

flipper 

rotating table 

jig 1 jig 2 

Goal: Assemble “A”, “B” and “C” parts 
into a composite “ABC” part. 



Process for making an “ABC” part 

1.  robot1 loads an A part into one of the jigs on the rotating table 
2.  robot1 loads a B part on top of it 
3.  the table rotates so the A and B parts are at robot2 
4.  robot2 joins the parts together, yielding an “AB” part 
5.  the table rotates back to robot1 
6.  if an AB part is required, robot1 unloads the part, else continue 
7.  robot1 moves the AB part to the flipper 
8.  the flipper flips the part over (“BA”) at the same time as robot1 

loads a C part into the jig  
9.  robot1 loads the BA part on top of the C part 
10.  the table rotates 
11.  robot2 joins the C and BA parts, yielding a complete ABC part 
12.  the table is rotated, and 
13.  robot1 then unloads the finished part. 



Actions and Percepts in the  
Holonic Manufacturing Example 

Robot1: 
•  percept: manufacture

(composite) 
•  load(part) into jig 
•  unload() 
•  moveToFlipper() 
•  moveFromFlipper() 

Robot2: 
•  join(jig): join the bottom 

part to the top part 

Flipper: 
•  flip() the item in the 

flipper 

Table: 
•  rotateTe(jig, position) 



REQUIREMENTS 



Requirements 

•  Requirements concerned with defining the 
required functionality of the system-to-be. 

•  Commonly used activities: 
– specifying instances of desired behaviour using 

scenarios 
– capturing system goals and their relationships 
– defining the interface between the system-to-be 

and its environment 
•  These activities are typically done in parallel 

in an iterative manner 
•  Some methodologies define roles … 



Roles 
•  Coherent grouping of related goals, percepts, actions 
•  Example:  

–  manager: this role is responsible for overall management of the 
manufacturing process. It does not perform any actions. 

–  pickAndPlacer: this role is responsible for moving parts in and 
out of the jig when it is located on the East side of the table. 
Associated actions are: load, moveToFlipper, moveFromFlipper, 
unload 

–  fastener: this role is responsible for joining parts together. 
Associated action: join. 

–  transporter: this role is responsible for transporting items by 
rotating the table. Associated action: rotateTo. 

–  flipper: this role is responsible for flipping parts using the “flip” 
action. 



Requirements: Scenarios 

•  Similar to OO use 
cases, but more 
details in some 
methodologies 

•  Structure and format 
varies 

•  Example (right) shows 
goals and actions, 
along with the roles 
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Scenario: manufacturePart(ABC)
Type Name Roles
G build2 manager, pickAndPlacer, fastener

G decideParts manager
G loadPart pickAndPlacer

A load(A) pickAndPlacer
G loadPart pickAndPlacer

A load(B) pickAndPlacer
G fastenParts fastener, transporter

A rotateTo(1,W) transporter
A join(1) fastener

G addPart manager, pickAndPlacer, fastener
G decideNext manager
G flipOver manager

A rotateTo(1,E) transporter
A moveToFlipper() pickAndPlacer
A flip() flipper

G loadPart pickAndPlacer
A load(C) pickAndPlacer [in parallel with flip]
A moveFromFlipper() pickAndPlacer

G fastenParts fastener, transporter
A rotateTo(1,W) transporter
A join(1) fastener

G complete manager
G assess manager
A rotateTo(1,E) transporter
A unload() pickAndPlacer

Figure 15.4: Scenario Steps

in a structured format as a sequence of steps, where each step is an action, per-
cept, goal or sub-scenario, performed by a given role, and accessing certain data.
As an example, a scenario for the Holonic manufacturing system is depicted in
Figure 15.4. As can be seen, each step is described in a structured way, showing
the type of each step (G for Goal, A for Action), the name of the action or goal
(e.g. “build2”), and which roles are involved. We use the following five roles in



Requirements: Goals 

•  Capture goals of system 
•  Is complementary to scenario  

– not specific to a given trace, but doesn’t capture 
sequencing. 

•  Extract initial goals from the scenario 
•  Refine by asking “why?” (gives parent goal) 

and “how?” (gives child goals) 
•  Results in goal model, e.g. goal tree 

– Some methodologies have richer notations 
– Example (next slide) also shows actions 



Example Goal Model 
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that the use of goals for requirements is motivated both by the fact that agents are
defined in terms of goals, but also by evidence (from non-agent work) that goals
are a good way to model requirements [123].

Creating a goal model can be done by identifying certain goals from the sce-
narios, and then refining them. One technique for refinement is asking “why” a
particular goal is achieved, which identifies its parent goal, and “how” a particular
goal is achieved, which identifies its subgoals [123]. Another technique is to con-
sider how goals influence other goals. In the case of the Holonic manufacturing
system the goal model is actually quite simple. One possible goal model might be
defined by beginning with a top-level goal (“manufacturePart”) and asking how
the goal is achieved, leading to the identification of subgoals. Asking why regard-
ing an identified goal can lead to identification of motivating goals which in turn
leads to identification of additional subgoals. For example asking why for manu-
facturePart could lead to identifying a goal of filling orders which in turn leads to
identification of subgoals to obtain orders and prioritise orders.

Key

 

<load(X)> <join(jig)> <rotateTo(jig,pos)> <moveToFlipper> <flip><moveFromFlipper> <unload>

manufacturePart

build2 addPart complete

decideParts loadPart fastenParts decideNext flipOver assess

goal<action>

Figure 15.5: Simple Goal Model

Some methodologies capture the goal model using a tree structure where each
goal has as children its subgoals. Other methodologies use more sophisticated
models which can capture the influences between goals, e.g. that one goal in-
hibits or supports the achievement of another goal [15]; or that particular goals
are triggered by certain events [53]. Figure 15.5 shows a simple goal model for
the Holonic manufacturing system. This goal model does not show dependencies
between goals, other than the parent-child relationship (depicted by an arrow from



Requirements: Environment  

•  Specify interface to environment in terms of 
actions and percepts 

•  May be pre-determined by problem 
– e.g. robot capabilities in Holonic Manufacturing 

•  Overlap exists between the three models 
(scenarios, goals, environment interface).  

•  Hence each model influences the others … 



Variations on requirements 

•  Some methodologies have an early 
requirements phase that captures the context 
of the system-to-be in terms of stakeholders, 
and their goals and dependencies. 

•  Capturing domain concepts (“ontology”) is 
important – can use UML class diagrams, 
Protégé … 

•  Some work has proposed richer 
environmental models (e.g. chapters 2 and 
13) 



DESIGN 



Design 

• Design aims to define the overall structure 
of the system by answering: 
– What agent types exist, and what (roles and) 

goals do they incorporate? 
– What are the communication pathways 

between agents? 
– How do agents interact to achieve the 

system’s goals? 



Design 

•  Two key models:  
– a static view of the system’s structure, and 
– a model that captures the dynamic behaviour 

of the system. 
•  Also capture shared data. 



“What agent types exist?” 

•  Common technique is to consider grouping of 
smaller “chunks” (e.g. roles), taking into 
account: 
– the degree of coupling between agents, 
– the cohesiveness of agent types, and 
– any other reasons for keeping “chunks” separate 

(e.g. deployment hardware, security, privacy) 
•  No single “right” answer – technique is about 

identifying tradeoff points.  



“What agent types exist?” 

In the Holonic Manufacturing example: 
• Natural to have each robot be a separate 

agent … 
• … but assign pickAndPlacer and manager 

roles to Robot1 
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scenario it is natural to have each robot represented as a separate agent type. In-
deed, this is the basically the approach that we adopt. The manager role we also
include in Robot1 as the manager role is making the decisions about what to load
and when to unload, which are closely associated with the pickAndPlacer role. If
we were including an agent which coordinates the whole system of cells, we may
have decided to put the manager role in that agent. However, in our small example
we assign the manager role to the Robot1 agent. Assigning goals to agent types
can be done based on the assignment of goals to roles, or may be done during the
process of determining agent types. In this case, the assignment is based on the
assignment of goals to roles (see Figure 15.4). Where goals that have subparts are
assigned to an agent that does not itself do all the subparts, then the responsible
agent will need to request other agents to do the necessary subparts. An example
is the goal flipOver which is assigned to Robot1, who will need to request as-
sistance from Table and FlipperRobot to do the actions required for this subgoal.
Similarly, the goal fastenParts, which is assigned to both the fastener and trans-
porter role, is assigned to a single agent (Robot2, which is assigned the fastener
role).

Role Agent Type Goals and Actions3

pickAndPlacer → Robot1 loadPart, load, unload,
moveToFlipper, moveFromFlipper

manager → Robot1 decideParts, decideNext, flipOver, assess
transporter → Table rotateTo
fastener → Robot2 fastenParts, join
flipper → FlipperRobot flip

We also need to define how the agents interact with the environment. That is,
which actions and percepts each agent deals with? If these have been assigned to
roles, then they are simply assigned to the appropriate agent along with the role.
In our example the actions were pre-defined based on the hardware, as specified
on page 3. We must also ensure that each percept is handled by some agent. In
our example we have the manufacture(composite) percept. We could assign this
to Robot1 (which performs the first action in the sequence needed to assemble a
part), or alternatively we could introduce a new agent type, Coordinator, which
manages which parts will be manufactured in which cells, etc. However, to keep
our example simple, we assign this percept to Robot1.

3Actions are shown in italics.

italics = actions 



System (static) structure 

•  Specified using System Overview Diagram 
•  First, derive goals, action and percept 

assignment.  
– Derived from the role-agent assignment: a 

role’s goals, actions and percepts are 
assigned to the agent that plays that role. 

•  Then consider communication …  



System Dynamics 

•  Captured using interaction protocols 
•  Process: 

– Begin with scenarios 
– Insert messages where communication is needed 

(i.e. when step N by agent A is followed by step  
N+1 by a different agent) 

– Generalise: “what else could happen here?”, 
“what could go wrong?” 

•  Agent UML (AUML) sequence diagrams often 
used for depicting interaction protocols. 



Holonic Manufacturing Protocols 

Top level protocol 
shows manufacturing 
process: 

•  initial loading of two 
parts and joining them 

•  then repeatedly 
adding a part and 
fastening it 

•  finally, unload the 
result 

Robot1 Robot2 Table FlipperRobot 

unlock

loop

unlock

ManufacturePart

ref Lock(R1,jigE)

<load> 

<load> 

ref Fasten

ref AddPart

ref Fasten

ref Lock(R1,jigE)

<unload> 



Fasten Protocol 

•  Fasten protocol simply involves a request 
(from Robot1 to Robot2) to fasten. 

• Robot2 then locks the table, performs the 
join action, and informs Robot1 

Robot1 Robot2 Table 

fasten(jig)

fastened(jig) unlock

Fasten

ref Lock(R2,jigW)

<join(jig)> 



Robot1 Table FlipperRobot 

flipRequest

flipped

opt

par

unlock

AddPart

ref Lock(R1,jigE)

<moveToFlipper> 

<flip> 

<load> 

<moveFromFlipper> 

AddPart Protocol 
AddPart protocol shows: 
•  the table being locked 
•  then the existing part is 

moved to the flipper 
•  then the new part is 

loaded (and, optionally, 
the old part is flipped at 
the same time (“par”)) 

•  and then the old part is 
moved back 

Note that showing actions in the protocol (e.g. “<load>”) is 
needed to show clearly what’s going on. 



Robot Table 

lock-at(Jig, Pos)

lockFailed

opt

locked-at

alt

loop until locked

Lock(Jig)

[table locked] 

else

<rotateTo(Jig,Pos)> 

Lock Protocol 

•  The Lock protocol is a 
simple request-
response (“please 
lock”, “ok”) … 

•   … extended to deal 
with failure (by 
retrying),  

•  and with an optional 
rotation to the desired 
position   



System Overview Diagram 

• Having developed the protocols, we can 
now capture the system’s (static) structure 
using a System Overview Diagram (next 
slide) 

• May also need to define shared data at 
this point. 



System Overview Diagram 

>manufacture< 
Robot1 

<load(X)> 

<join(jig)> <rotateTo(jig,pos)> <flip> 

<moveFromFlipper> 

<unload> 

<moveToFlipper> 

Robot2 Table Flipper
Robot 

Lock 

Lock 

AddPart Fasten 

Key: 
<action> 

agent 

>percept< 

Protocol 
Unlock 

Message 



DETAILED DESIGN 



Detailed Design 
•  Detailed design aims to specify the internal 

structure of each agent, so that implementation 
can be done. 

•  Do this by starting with each agent’s interface 
(messages sent/received, actions, percepts, 
goals) and defining its internals. 

•  To do this, need to know the target implementation 
platform type 

•  We consider two examples: 
– A Belief-Desire-Intention (BDI) platform 
– A design using a Finite State Machine (FSM) targeting 

JADE 



Example: Robot1 

•  We know that Robot1: 
– participates in the protocols: AddPart, Lock, 

Fasten 
– has actions: load, unload, moveToFlipper, 

moveFromFlipper 
– receives percept manufacture 
– has goals: loadPart, decideParts, decideNext, 

flipOver 
•  What plans and internal events does Robot1 

need to play its part?  



BDI Platform Design 

•  BDI platforms define an agent in terms of a 
collection of plans that are triggered by 
events (or messages). 
– Each event may trigger more than one plan – 

which plan to use is determined by the plan’s 
context condition 

•  To capture detailed design use an Agent 
Overview Diagram for each agent type 
– This shows plans, events, messages, percepts 

and actions; and the relationships between them 



Example: Initial Structure 

•  Start by creating a plan to handle the percept 
•  This plan then posts events corresponding to the 

subgoals 
•  Each of these events needs a plan to handle it 

>manufacture< 
manufacture 

PartPlan 

build2 add 
Part 

build2Plan addPartPlan complete 
Plan 

plan 

<action> 

>percept< 

event 

Key: 

compl
ete 



Example: developing build2  

>manufacture< 
manufacture 

PartPlan 

build2 

<load(X)> 

add 
Part 

fasten(jig) 

unlock build2Plan addPartPlan 

decide 
Parts 

decideParts
Plan 

message 

plan 

<action> 

>percept< 

event 

Key: 

complete 
Plan 

compl
ete 

lock-at 

•  The build2Plan posts events corresponding to its 
subgoals – loadPart simply becomes the action load 

•  Since the fastenParts subgoal is performed by Robot2, 
instead of posting an internal event, send a message 
(to Robot2) 

•  Also need to lock and unlock, so add these messages 



Example: addPart and complete 

>manufacture< manufacture 
PartPlan 

build2 

<load(X)> <moveFromFlipper> 

<unload> 

<moveToFlipper> 

add 
Part fasten(jig) 

unlock build2Plan addPartPlan 

flip 
Over 

flipOverPlan 

decide 
Parts 

decideParts
Plan 

flipRequest 

flipped 

complete 
Plan 

message 

plan 

<action> 

>percept< 

event 

Key: 

lock-at 

compl
ete 

decide 
Next 

decideNext
Plan 

•  addPart has subgoals loadPart, fastenParts, 
decideNext and flipOver – add them. 

•  add messages in line with the interaction 
protocols 

•  subgoal “assess” is  
handled by a suitable  
context condition on  
the completePlan  



Example: final BDI design 

•  Check that all messages that Robot1 should 
be able to send or receive are in the detailed 
design 
– sent: lock-at, fasten, flipRequest, unlock - all 

present in design 
– received messages missing: lockFailed, locked-

at, fastened, flipped – add, and ensure there is a 
plan that deals with each incoming message. 

•  Use capability to encapsulate lock 
management 



Final BDI Design for Robot1 
>manufacture< manufacture 

PartPlan 

build2 

<load(X)> <moveFromFlipper> 

<unload> 

<moveToFlipper> 

add 
Part fasten(jig) 

unlock build2Plan addPartPlan 

flip 
Over 

flipOverPlan 

decide 
Parts 

decideParts
Plan 

flipRequest 

flipped 

complete 
Plan 

message 

plan 

<action> 

>percept< 

event 

Key: 

decide 
Next 

decideNext
Plan 

lockCapability 

lock-at
(jig,pos) 

fastened(jig) 

continue 



Approach II: FSM 

• Derive internal process for Robot1 by 
identifying states of interaction (gaps 
between messages in the protocols) 
– messages are transitions between states 
– compress interactions that don’t involve 

Robot1 (e.g. Robot2 and Table locking the 
table in the Fasten protocol) 



Final FSM Design for Robot1 

load(A) 

load(B) 

receive(fastened(jig)) 

/send(flipRequest) 

receive(flipped) 

/send(unlock) 

/send(fasten(jig)) 

Wait 
moveToFlipper 

moveFromFlipper 

load(C) Wait 

unload 

receive(manufacture(part)) 

/send(lock-at(Jig,Pos)) 

Assess 

receive(locked-at) 

/send(unlock) 

Wait 

receive(lockFailed) 



Implementation 

•  Mapping detailed design to implementation 
generally done manually 

•  Some design tools can generate skeleton 
code in an agent-oriented programming 
language 

•  Some work on round-trip engineering exists 
•  Some work has been done on model driven 

development of agent systems 
– implementation generated from design 
– … but design expands to include additional 

information to make this possible …  



Assurance 

•  Support for this is less well developed than 
support for “core” activities (requirements, 
design, detailed design). 

• Much of the work in testing and debugging 
uses information created during design 
– e.g. using interaction protocols to monitor 

system execution 



Testing and Debugging 

•  Testing agents is hard: concurrent 
systems, with goal-directed flexible 
behaviour … 

•  Testing takes places at different levels: 
units, modules, integration, system, and 
acceptance 

•  Testing has different aspects: test case 
design, execution, and checking of test 
results. 



Testing and Debugging (2) 

• Most well developed contemporary 
methodologies provide some support for 
automated execution of tests, and 
checking test results. 

• … but test case generation is usually 
manual  



Testing and Debugging (3) 

•  Tropos has a tool (eCAT) that provides 
support for test case generation 
– This uses ontologies to generate message 

content 
•  Prometheus has work on test case 

generation 

•  But is a given set of tests adequate? 



Testing Adequacy 

• Given the complexity of agent systems, a 
set of tests may not be adequate 

•  There has been some work on adapting 
existing notion of code coverage to agents 

•  But this work is not yet used in agent 
testing tools 



Formal Methods 
•  The difficulty of testing agent systems has 

motivated the development of formal methods 
•  Formal methods use mathematical techniques to 

prove that a system is correct (with respect to its 
formalised specification) 

•  Much of the work uses model checking, where an 
(often abstract) model of the system is 
systematically checked against a specification 

•  But current state-of-the-art is still limited to very 
small programs (e.g. six line contract net with 
three agents) 



Software Maintenance 

•  Once software has been deployed, it is 
subject to further change, such as:  
– adapting to changes in its environment 
– adding new functionality 

•  Only one piece of work that has looked at 
maintenance of agent systems 

•  Dam et al. focused on change propagation in 
design models: given a change to a design 
model, what other changes are needed to 
restore consistency of the model? 



Comparing Methodologies 
•  In the early days of the field there were many 

methodologies 
•  This prompted work (around 2001-2003) on comparing 

methodologies 
•  Typical approach was feature based: 

– Define a list of features of interest 
– Assess each methodology against each feature, resulting 

in a large table 
•  Unfortunately this approach suffers from subjectivity  

– … in some cases even the authors of a methodology didn’t 
agree on how to rate their methodology on given criteria! 



Conclusions 

•  Areas for further research: 
– Understanding the benefits of the agent paradigm 
– Designing flexible interactions 
– Extending methodologies to deal with systems 

• … that have complex and dynamic organisational 
structure 

• … that have many simple agents with emergent 
behaviour 

• … that are an open society of agents 

– Techniques for assurance of agent systems 



Conclusions 

•  Areas for further work (not research): 
– Standardisation of methodologies 

• Reduce unnecessary differences between 
methodologies 

• Enable reuse of tool development, rather than 
duplicated effort 

• One approach that has been proposed is method 
engineering 

– Integration of agent practices, standards and 
tools with mainstream  


