
Chapter 14:
Specification and Verification

of Multi-Agent Systems
Jürgen Dix and Michael Fisher

Multi-Agent Systems, edited by Gerhard Weiss
MIT Press, May 2012

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 1

Time
Duration: Six lectures

Course type

Level: advanced
Prerequisites:

Course website
http://mitpress.mit.edu/multiagentsystems

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 2

Course Overview

The course can be divided into 6 lectures à 60 minutes:
Lec. 1: Agent Specification
Lec. 2: From Specifications to Implementations
Lec. 3: Formal Verification
Lec. 4: Deductive Verification
Lec. 5: Algorithmic Verification of Models
Lec. 6: Algorithmic Verification of Agents

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 3

Reading Material I

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
The MIT Press.

Bulling, N., Dix, J., and Jamroga, W. (2010).
Model checking logics of strategic ability: Complexity.
In Dastani, M., Hindriks, K. V., and Meyer, J.-J. C., editors,
Specification and Verification of Multi-Agent Systems. Springer.

Clarke, E., Grumberg, O., and Peled, D. (1999).
Model Checking.
MIT Press.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 4

Reading Material II

Jürgen Dix and Michael Fisher (2012).
Chapter 14: Specification and Verification of Multi-agent
Systems.
In G. Weiss (Ed.), Multiagent Systems, MIT Press.

Fisher, M. (2011).
An Introduction to Practical Formal Methods Using Temporal
Logic.
Wiley.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 5

Outline
1 Introduction
2 Agent Specification
3 From Specification to Implementation
4 Formal Verification
5 Deductive Verification of Agents
6 Algorithmic Verification of Models
7 Algorithmic Verification of Programs
8 Appendix: Automata Theory
9 References

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 6

1 Introduction

1. Introduction

1 Introduction
Logics of Agency
Temporal Logics
Sample Specification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 7

1 Introduction

Why do we need verification methods?

AT&T Telephone Network Outage (1990)

Problem in New York City: 9 hour outage of large parts
of US telephone network.
Costs: several 100 million $.
Source: wrong interpretation of a break statement in C.

“. . . Virtually the entire AT&T network of 4ESS toll
tandems switches went in and out of service over and
over again on Jan. 15, 1990 A software bug was
found.” [Wikipedia]

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 8

1 Introduction

The following eight slides are partly based on the book

‘Principles of Model Checking” by Christel Baier and

Joost-Pieter Katoen.

Pentium FDIV BUG (1994)

(FDIV: Floating point division unit)

Incorrect results.
Costs: 500 million $ and image loss.
Source:

“. . . Certain floating point division operations
performed with these processors would produce
incorrect results.” [Wikipedia]

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 9

1 Introduction

Ariane 5 Desaster (1996)

Crash of Ariane 5-missle.
Costs: > 500 million $.
Source:

“. . . a data conversion from a 64-bit floating point to
16-bit signed integer value caused a hardware
exception. . . ” [Wikipedia]

What are the lessons learned?

 Verification may pay off!
In such cases the extra costs and efforts put into proper
verification techniques may be cheaper as the results of
an error.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 10

1 Introduction

Ariane 5 Desaster (1996)

Crash of Ariane 5-missle.
Costs: > 500 million $.
Source:

“. . . a data conversion from a 64-bit floating point to
16-bit signed integer value caused a hardware
exception. . . ” [Wikipedia]

What are the lessons learned?

 Verification may pay off!
In such cases the extra costs and efforts put into proper
verification techniques may be cheaper as the results of
an error.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 10

1 Introduction

Software becomes larger.
Use in safety-critical systems, important domains.
Increasing need for reliable software.

Errors can be costly and fatal (Ariane-5 launch, stock
market systems,...).
Mass production of products (errors are expensive,
computer chips,...).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 11

1 Introduction

Testing and reviewing (non-formal methods)

Deductive methods (Hoare Calculus), code integration
(undecidable, expertise during programming
necessary)

Model checking (how is the correct model
obtained?)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

1 Introduction

Testing and reviewing (non-formal methods)

Deductive methods (Hoare Calculus), code integration
(undecidable, expertise during programming
necessary)

Model checking (how is the correct model
obtained?)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

1 Introduction

Testing and reviewing (non-formal methods)

Deductive methods (Hoare Calculus), code integration
(undecidable, expertise during programming
necessary)

Model checking (how is the correct model
obtained?)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

1 Introduction

Model Checking Technique
Errors are expensive: Ariane 5 missile crash,. . .

Model checking provides means to detect such erros!

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

Formal model

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

' = hh{1, 2}ii⇤ g>
Problem

(e.g. mobile phone)
+

(Safety) Property
(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

1 Introduction

Model Checking Technique
Errors are expensive: Ariane 5 missile crash,. . .

Model checking provides means to detect such erros!

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

Formal model

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

' = hh{1, 2}ii⇤ g>
Problem

(e.g. mobile phone)
+

(Safety) Property
(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

1 Introduction

Model Checking Technique
Errors are expensive: Ariane 5 missile crash,. . .

Model checking provides means to detect such erros!

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

Formal model

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

' = hh{1, 2}ii⇤ g>
Problem

(e.g. mobile phone)
+

(Safety) Property
(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

1 Introduction

Model Checking Technique
Errors are expensive: Ariane 5 missile crash,. . .

Model checking provides means to detect such erros!

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

Formal model

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

' = hh{1, 2}ii⇤ g>
Problem

(e.g. mobile phone)
+

(Safety) Property
(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

1 Introduction

Model Checking Technique
Errors are expensive: Ariane 5 missile crash,. . .

Model checking provides means to detect such erros!

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

Formal model

Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

' = hh{1, 2}ii⇤ g>
Problem

(e.g. mobile phone)
+

(Safety) Property
(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Formal model

Logical (formal)
specification

Let's model ckeck...

M |= hh{1, 2}ii⇤ g>
' = hh{1, 2}ii⇤ g> Computational

Complexity?

?Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

1 Introduction

system requirement

formal model formal specification

model checking
algorithm

true

false

counterexample

flaw in system

model checker

formalization

informal problem

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 14

1 Introduction

Model checking refers to the problem to determine
whether a given formula ϕ is satisfied in a state q of
modelM.

Local model checking is the decision problem that
determines membership in the set
MC(L, Struc, |=) := {(M, q, ϕ) ∈ Struc× L | M, q |= ϕ},
where

L is a logical language,
Struc is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L
and Struc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 15

1 Introduction

Model checking refers to the problem to determine
whether a given formula ϕ is satisfied in a state q of
modelM.

Local model checking is the decision problem that
determines membership in the set
MC(L, Struc, |=) := {(M, q, ϕ) ∈ Struc× L | M, q |= ϕ},
where

L is a logical language,
Struc is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L
and Struc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 15

1 Introduction

Global model checking: Determine all states in which ϕ
is true.

Here: The complexities of local and global model
checking coincide.

We are interested in the decidability and the
computational complexity of determining whether an
input instance (M, q, ϕ) belongs to MC(. . .).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 16

1 Introduction

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Figure 1 : Two robots and a carriage: a schematic view (left) and
a transition systemM0 that models the scenario (right).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 17

1 Introduction

Example 1.1 (Robots and Carriage)

Two robots push a carriage from opposite sides (Figure 1).
As a result, the carriage can move clockwise or
anticlockwise, or it can remain in the same
place—depending on who pushes with more force (and,
perhaps, who refrains from pushing). We identify 3 different
positions of the carriage, and associate them with states q0,
q1, and q2. The arrows in transition systemM0 indicate how
the state of the system can change in a single step. We label
the states with propositions pos0, pos1, pos2, to refer to the
current position of the carriage.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 18

1 Introduction

Definition 1.2 (Kripke Model, Path)

A Kripke model (or unlabelled transition system) is given
byM = 〈St,R,Π, π〉 where St is a nonempty set of states
(or possible worlds), R ⊆ St× St is a serial transition
relation on states, Π is a set of atomic propositions, and
π : Π→ 2St is a valuation of propositions. A path λ (or
computation) inM is an infinite sequence of states that can
result from subsequent transitions, and refers to a possible
course of action. For q ∈ St we use ΛM(q) to denote the set
of all paths ofM starting in q and we define ΛM as⋃
q∈St ΛM(q). The subscript “M” is often omitted when

clear from the context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 19

1 Introduction
1.1 Logics of Agency

1.1 Logics of Agency

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

1 Introduction
1.1 Logics of Agency

Knowledge operators
Modal logics allow us to introduce operators of the form
Knameφ meaning the the individual “name” knows that φ is
true. Here are some examples:

KJürgenraining : Jürgen knows it is raining
KJürgenKJürgenraining : Jürgen knows that he knows it is
raining
KJürgen¬KJürgenwarm: Jürgen knows that he doesn’t
know it is warm.
KJürgenKMichaelwarm: Jürgen knows that Michael knows it
is warm-

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 21

1 Introduction
1.1 Logics of Agency

Schemata

We can also consider schemata of the form

KJürgenφ → KMichaelφ

for all formulae φ. This means that whatever Jürgen knows,
Michael knows and soMichael knows at least as much as
Jürgen.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 22

1 Introduction
1.1 Logics of Agency

Temporal operators

Often, temporal dependencies are important and needed in
the language besides the knowledge operators.
©KJürgenwarm: in the next moment, Jürgen will know
it is warm
KMichael♦raining : Michael knows it will eventually be
raining

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 23

1 Introduction
1.1 Logics of Agency

Structure of Agent theories
This leads us to a very common structure for agent theories,
and so for agent specification languages, comprising

1 a logical dimension describing the underlying
dynamic/temporal nature of the agents, for example
dynamic logic or temporal logic,

2 a logical dimension describing the information the
agent has, for example a logic of belief or logic of
knowledge (as above), and

3 a logical dimension describing the motivations and
agent has, for example a logic of goals, desires,
wishes, or intentions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 24

1 Introduction
1.2 Temporal Logics

1.2 Temporal Logics

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 25

1 Introduction
1.2 Temporal Logics

Reasoning about Time
The accessibility relation represents time.
Time: linear vs. branching.
Reasoning about a particular computation of a system.
Models: paths (e.g. obtained from Kripke structures)

start

start

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 26

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties

liveness properties
fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties
liveness properties

fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
and distributed systems.

Much of this popularity has been achieved because a
number of useful concepts can be formally, and concisely,
specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

1 Introduction
1.2 Temporal Logics

Typical temporal operators

Xϕ ϕ is true in the neXt moment in time
Gϕ ϕ is true Globally: in all future moments
Fϕ ϕ is true in Finally: eventually (in the future)
ϕU ψ ϕ is true Until at least the moment when ψ

becomes true (and this eventually happens)

G((¬passport ∨ ¬ticket) → X¬board_flight)

send(msg, rcvr) → Freceive(msg, rcvr)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 28

1 Introduction
1.2 Temporal Logics

Typical temporal operators

Xϕ ϕ is true in the neXt moment in time
Gϕ ϕ is true Globally: in all future moments
Fϕ ϕ is true in Finally: eventually (in the future)
ϕU ψ ϕ is true Until at least the moment when ψ

becomes true (and this eventually happens)

G((¬passport ∨ ¬ticket) → X¬board_flight)

send(msg, rcvr) → Freceive(msg, rcvr)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 28

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt
GfuelOK
and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt
GfuelOK
and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt

GfuelOK
and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt
GfuelOK

and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt
GfuelOK
and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Safety Properties

“something bad will not happen”
“something good will always hold”

Typical examples:

G¬bankrupt
GfuelOK
and so on . . .

Usually: G¬....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich
power_on→ Fonline
and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich
power_on→ Fonline
and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich

power_on→ Fonline
and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich
power_on→ Fonline

and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich
power_on→ Fonline
and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Liveness Properties

“something good will happen”

Typical examples:

Frich
power_on→ Fonline
and so on . . .

Usually: F....

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

1 Introduction
1.2 Temporal Logics

Fairness Properties
Combinations of safety and liveness possible:

FG¬dead
G(request_taxi→ Farrive_taxi) fairness

Strong fairness

“If something is requested then it will be allocated”:

G(attempt → Fsuccess),
GFattempt → GFsuccess.

Scheduling processes, responding to messages, etc.
No process is blocked forever, etc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

1 Introduction
1.2 Temporal Logics

Fairness Properties
Combinations of safety and liveness possible:

FG¬dead
G(request_taxi→ Farrive_taxi)

 fairness

Strong fairness

“If something is requested then it will be allocated”:

G(attempt → Fsuccess),
GFattempt → GFsuccess.

Scheduling processes, responding to messages, etc.
No process is blocked forever, etc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

1 Introduction
1.2 Temporal Logics

Fairness Properties
Combinations of safety and liveness possible:

FG¬dead
G(request_taxi→ Farrive_taxi) fairness

Strong fairness

“If something is requested then it will be allocated”:

G(attempt → Fsuccess),
GFattempt → GFsuccess.

Scheduling processes, responding to messages, etc.
No process is blocked forever, etc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

1 Introduction
1.3 Sample Specification

1.3 Sample Specification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 32

1 Introduction
1.3 Sample Specification

Contract net protocol
Consider a simple contract net protocol between agents
and begin with just the seller agent. A naive requirement
for this seller might be that the seller will accept the first
proposal it receives, e.g.

received(offer) ⇒ jaccept(offer) .

Of course, it may well be that the offer is not acceptable, so

(received(offer) ∧ acceptable(offer)) ⇒ jaccept(offer)

and, quite possibly, the acceptance will take some time:

(received(offer) ∧ acceptable(offer)) ⇒ ♦accept(offer) .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

1 Introduction
1.3 Sample Specification

Contract net protocol (cont.)

However, this is quite a strong requirement. More likely, we
will require the agent accept one of the reasonable offers
and so, using some additional first-order syntax,

[∃O1 . received(O1) ∧ acceptable(O1)]
⇒

[∃O2 . received(O2) ∧ acceptable(O2) ∧ ♦accept(O2)] .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 34

2 Agent Specification

2. Agent Specification

2 Agent Specification
LTL and variants
CTL and Variants
ATL and variants
Imperfect Information
Dynamic Logics

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

2 Agent Specification
2.1 LTL and variants

2.1 LTL and variants

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 36

2 Agent Specification
2.1 LTL and variants

Linear-Time Temporal Logic

Reasoning about a particular computation of a system.

Time is linear: just one possible future moment!

Models: paths (e.g. obtained from Kripke structures)

λ : N0 → St.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 37

2 Agent Specification
2.1 LTL and variants

Definition 2.1 (Language LLTL [Pnueli, 1977])
The language LLTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ | Xϕ.

The additional operators
F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ >U ϕ and

Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,⊥,∧,→, and↔ are
defined in their usual way as macros.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 38

2 Agent Specification
2.1 LTL and variants

Definition 2.1 (Language LLTL [Pnueli, 1977])
The language LLTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ | Xϕ.

The additional operators
F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ >U ϕ and

Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,⊥,∧,→, and↔ are
defined in their usual way as macros.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 38

2 Agent Specification
2.1 LTL and variants

Definition 2.1 (Language LLTL [Pnueli, 1977])
The language LLTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ | Xϕ.

The additional operators
F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ >U ϕ and

Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,⊥,∧,→, and↔ are
defined in their usual way as macros.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 38

2 Agent Specification
2.1 LTL and variants

Definition 2.1 (Language LLTL [Pnueli, 1977])
The language LLTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ | Xϕ.

The additional operators
F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ >U ϕ and Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,⊥,∧,→, and↔ are
defined in their usual way as macros.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 38

2 Agent Specification
2.1 LTL and variants

Models of LTL
The semantics is given over paths, which are infinite
sequences of states from St, and a standard labelling
function π : St→ 2Prop that determines which propositions
are true at which states.

Definition 2.2 (Path λ = q1q2q3 . . .)

A path λ over a set of states St is an infinite sequence
from Stω. We also identify it with a mapping N0 → St.

λ[i] denotes the ith position on path λ (starting from
i = 0) and
λ[i,∞] denotes the subpath of λ starting from i
(λ[i,∞] = λ[i]λ[i+ 1] . . .).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 39

2 Agent Specification
2.1 LTL and variants

Models of LTL
The semantics is given over paths, which are infinite
sequences of states from St, and a standard labelling
function π : St→ 2Prop that determines which propositions
are true at which states.

Definition 2.2 (Path λ = q1q2q3 . . .)

A path λ over a set of states St is an infinite sequence
from Stω. We also identify it with a mapping N0 → St.

λ[i] denotes the ith position on path λ (starting from
i = 0) and
λ[i,∞] denotes the subpath of λ starting from i
(λ[i,∞] = λ[i]λ[i+ 1] . . .).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 39

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff

p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff

not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff

λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff

λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff

there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and

λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

λ = q1q2q3 . . . ∈ Stω

Definition 2.3 (Semantics of LTL)

Let λ be a path and π be a labelling function over St. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p iff p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we will also write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ iff λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕU ψ iff there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

2 Agent Specification
2.1 LTL and variants

Other temporal operators

λ, π |= Fϕ iff

λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff λ[i,∞], π |= ϕ for all i ∈ N0 ;

Exercise
Prove that the semantics does indeed match the definitions
Fϕ ≡ >U ϕ and Gϕ ≡ ¬F¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 41

2 Agent Specification
2.1 LTL and variants

Other temporal operators

λ, π |= Fϕ iff λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff

λ[i,∞], π |= ϕ for all i ∈ N0 ;

Exercise
Prove that the semantics does indeed match the definitions
Fϕ ≡ >U ϕ and Gϕ ≡ ¬F¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 41

2 Agent Specification
2.1 LTL and variants

Other temporal operators

λ, π |= Fϕ iff λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff λ[i,∞], π |= ϕ for all i ∈ N0 ;

Exercise
Prove that the semantics does indeed match the definitions
Fϕ ≡ >U ϕ and Gϕ ≡ ¬F¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 41

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= Fpos1

λ′ = λ[1,∞], π |= pos1
pos1 ∈ π(λ′[0])

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 42

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= Fpos1

λ′ = λ[1,∞], π |= pos1

pos1 ∈ π(λ′[0])

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 42

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= Fpos1

λ′ = λ[1,∞], π |= pos1
pos1 ∈ π(λ′[0])

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 42

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and

λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and

λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and

λ[2,∞], π |= Fpos1 and
. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and

λ[2,∞], π |= Fpos1 and
. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 iff

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

2 Agent Specification
2.1 LTL and variants

Representation of paths

Paths are infinite entities.

They are theoretical constructs.

We need a finite representation!

Such a finite representation is given by a transition
system or a pointed Kripke structure.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 44

2 Agent Specification
2.1 LTL and variants

Representation of paths

Paths are infinite entities.

They are theoretical constructs.

We need a finite representation!

Such a finite representation is given by a transition
system or a pointed Kripke structure.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 44

2 Agent Specification
2.1 LTL and variants

Computational vs. behavioral structure

System

Computational str.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 45

2 Agent Specification
2.1 LTL and variants

Computational vs. behavioral structure

System

Computational str.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 45

2 Agent Specification
2.1 LTL and variants

Computational vs. behavioral structure

System Computational str.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 45

2 Agent Specification
2.1 LTL and variants

Computational str.

Behavioral str.

q0

q2 q1

pos0

pos1pos2

q0

q0

q0

q1

q1 q1 q2

Important!

The behavioral structure is usually infinite! Here, it is an
infinite tree. We say it is the q0-unfolding of the model.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 46

2 Agent Specification
2.1 LTL and variants

Computational str. Behavioral str.

q0

q2 q1

pos0

pos1pos2

q0

q0

q0

q1

q1 q1 q2

Important!

The behavioral structure is usually infinite! Here, it is an
infinite tree. We say it is the q0-unfolding of the model.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 46

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.

G¬r

2 r should occur exactly once.

(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.

F(r ∧ Xs)

4 r is true at exactly all even states.

r ∧G(r↔ ¬Xr)

5 r is true at each even state (the odd states do not
matter). Does r ∧G(r ∧ XXr) work?

No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.
G¬r

2 r should occur exactly once.

(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.

F(r ∧ Xs)

4 r is true at exactly all even states.

r ∧G(r↔ ¬Xr)

5 r is true at each even state (the odd states do not
matter). Does r ∧G(r ∧ XXr) work?

No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.
G¬r

2 r should occur exactly once.
(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.

F(r ∧ Xs)

4 r is true at exactly all even states.

r ∧G(r↔ ¬Xr)

5 r is true at each even state (the odd states do not
matter). Does r ∧G(r ∧ XXr) work?

No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.
G¬r

2 r should occur exactly once.
(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.
F(r ∧ Xs)

4 r is true at exactly all even states.

r ∧G(r↔ ¬Xr)

5 r is true at each even state (the odd states do not
matter). Does r ∧G(r ∧ XXr) work?

No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.
G¬r

2 r should occur exactly once.
(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.
F(r ∧ Xs)

4 r is true at exactly all even states. r ∧G(r↔ ¬Xr)
5 r is true at each even state (the odd states do not

matter). Does r ∧G(r ∧ XXr) work?

No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Some Exercises
Example 2.4

Formalise the following as LTL formulae:

1 r should never occur.
G¬r

2 r should occur exactly once.
(¬r)U (r ∧ XG¬r)

3 At least once r should directly be followed by s.
F(r ∧ Xs)

4 r is true at exactly all even states. r ∧G(r↔ ¬Xr)
5 r is true at each even state (the odd states do not

matter). Does r ∧G(r ∧ XXr) work? No. This is not
expressible.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 47

2 Agent Specification
2.1 LTL and variants

Relation to first-order logic (1)

1 The monadic first-order theory of (linear) order,
FO(≤) is equivalent to LTL.

2 There is a translation from sentences of LTL to
sentences of FO(≤) and vice versa, such that the LTL
sentence is true in λ, π iff its translation is true in the
associated first-order structure.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 48

2 Agent Specification
2.1 LTL and variants

Relation to first-order logic (2)
1 More precisely: an infinite path λ is described as a

first-order structure with domain N and predicates Pp

for p ∈ Prop. The predicates stand for the set of
timepoints where p is true. So each path λ can be
represented as a structure
Nλ = 〈N,≤N, PN1 , P

N
2 , . . . P

N
n 〉.

Then each LTL formula φ translates to a first-order
formula αφ(x) with one free variable s.t.

φ is true in λ[n,∞] iff αφ(n) is true in Nλ.

And conversely: for each first-order formula with a
free variable there is a corresponding LTL formula
s.t. the same condition holds.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 49

2 Agent Specification
2.1 LTL and variants

The formulae GFp, FGp

1 What are their counterparts in FO(≤)?
2 We will see later that FGp does not belong to CTL, but

to CTL∗. It is not even equivalent to a CTL formula.
3 However, GFp is equivalent to a CTL formula: AGAFp

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 50

2 Agent Specification
2.1 LTL and variants

Some Remarks

1 A particular logic LTL is determined by the number n of
propositional variables. Strictly speaking, this number
should be a parameter of the logic. This also applies to
the logics CTL and ATL.

2 While both F and G can be expressed using U , the
converse is not true: U can not be expressed by F and
G.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 51

2 Agent Specification
2.1 LTL and variants

Satisfiability of LTL formulae

A formula is satisfiable, if there is a path where it is true. Can
we restrict the structure of such paths? I.e. can we restrict
to simple paths, for example paths that are periodic?

If this is the case, then we might be able to construct
counterexamples more easily, as we need only check
very specific paths.
It would be also useful to know how long the period is
and within which initial segment of the path it starts,
depending on the length of the formula ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 52

2 Agent Specification
2.1 LTL and variants

Satisfiability of LTL formulae (cont.)

Theorem 2.5 (Periodic model theorem
[Sistla and Clarke, 1985])

A formula ϕ ∈ LLTL is satisfiable iff there is a path λ which is
ultimately periodic, and the period starts within 21+|ϕ| steps
and has a length which is ≤ 41+|ϕ|.

 2O(n) 4O(n)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 53

2 Agent Specification
2.2 CTL and Variants

2.2 CTL and Variants

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 54

2 Agent Specification
2.2 CTL and Variants

Branching Time

CTL, CTL∗: Computation Tree Logics.

Reasoning about possible computations of a system.

Time is branching: We want all possible computations
included!

Models: states (time points, situations), transitions
(changes). (Kripke models).

Paths: courses of action, computations. (LTL)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 55

2 Agent Specification
2.2 CTL and Variants

Path quantifiers: A (for all paths), E (there is a path);

Temporal operators: X (nexttime), F (finally), G
(globally) and U (until);

CTL: each temporal operator must be immediately
preceded by exactly one path quantifier;

CTL∗: no syntactic restrictions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 56

2 Agent Specification
2.2 CTL and Variants

Path quantifiers: A (for all paths), E (there is a path);

Temporal operators: X (nexttime), F (finally), G
(globally) and U (until);

CTL: each temporal operator must be immediately
preceded by exactly one path quantifier;

CTL∗: no syntactic restrictions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 56

2 Agent Specification
2.2 CTL and Variants

Example 2.6 (Branching Time)

q0

q1 q2

q4

p

q3
q

q

p

In this structure, whenever p holds at some timepoint, then
there is a path where q holds in the next step and there is
(another) path where ¬q holds in the next step. And this
holds along all paths (there are three infinite paths).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 57

2 Agent Specification
2.2 CTL and Variants

Definition 2.7 (LCTL∗ [Emerson and Halpern, 1986])

The language LCTL∗(Prop) is given by all formulae generated
by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eγ

where

γ ::= ϕ | ¬γ | γ ∨ γ | γ U γ | Xγ

and p ∈ Prop. Formulae ϕ (resp. γ) are called state (resp.
path) formulae.

We use the same abbreviations as for LLTL:

λ, π |= Fϕ iff

λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff λ[i,∞], π |= ϕ for all i ∈ N0 ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 58

2 Agent Specification
2.2 CTL and Variants

Definition 2.7 (LCTL∗ [Emerson and Halpern, 1986])

The language LCTL∗(Prop) is given by all formulae generated
by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eγ

where

γ ::= ϕ | ¬γ | γ ∨ γ | γ U γ | Xγ

and p ∈ Prop. Formulae ϕ (resp. γ) are called state (resp.
path) formulae.

We use the same abbreviations as for LLTL:

λ, π |= Fϕ iff λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff

λ[i,∞], π |= ϕ for all i ∈ N0 ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 58

2 Agent Specification
2.2 CTL and Variants

Definition 2.7 (LCTL∗ [Emerson and Halpern, 1986])

The language LCTL∗(Prop) is given by all formulae generated
by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eγ

where

γ ::= ϕ | ¬γ | γ ∨ γ | γ U γ | Xγ

and p ∈ Prop. Formulae ϕ (resp. γ) are called state (resp.
path) formulae.

We use the same abbreviations as for LLTL:

λ, π |= Fϕ iff λ[i,∞], π |= ϕ for some i ∈ N0 ;
λ, π |= Gϕ iff λ[i,∞], π |= ϕ for all i ∈ N0 ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 58

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that

there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that

ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

The LCTL∗-formula EFϕ, for instance, ensures that there
is at least one path on which ϕ holds at some (future)
time moment.

The formula AFGϕ states that ϕ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

LCTL∗-formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

The logic is complex! For practical purposes, a
fragment with better computational properties is
often sufficient.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡

>U ϕ

,
AXϕ ≡

¬EX¬ϕ

,
AGϕ ≡

¬EF¬ϕ

, and
AϕU ψ ≡

. . .

Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡

>U ϕ

,
AXϕ ≡

¬EX¬ϕ

,
AGϕ ≡

¬EF¬ϕ

, and
AϕU ψ ≡

. . .

Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡ >U ϕ,
AXϕ ≡

¬EX¬ϕ

,
AGϕ ≡

¬EF¬ϕ

, and
AϕU ψ ≡

. . .

Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡ >U ϕ,
AXϕ ≡ ¬EX¬ϕ,
AGϕ ≡

¬EF¬ϕ

, and
AϕU ψ ≡

. . .

Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡ >U ϕ,
AXϕ ≡ ¬EX¬ϕ,
AGϕ ≡ ¬EF¬ϕ, and
AϕU ψ ≡

. . .

Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

Definition 2.8 (LCTL [Clarke and Emerson, 1981])

The language LCTL(Prop) is given by all formulae generated
by the following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E(ϕU ϕ) | EXϕ | EGϕ.

We introduce the following macros:

Fϕ ≡ >U ϕ,
AXϕ ≡ ¬EX¬ϕ,
AGϕ ≡ ¬EF¬ϕ, and
AϕU ψ ≡ . . . Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown

2 EFXshutdown
3 AGFrain
4 AGAFrain (Is it different from (3)?)
5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown
2 EFXshutdown

3 AGFrain
4 AGAFrain (Is it different from (3)?)
5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown
2 EFXshutdown
3 AGFrain

4 AGAFrain (Is it different from (3)?)
5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown
2 EFXshutdown
3 AGFrain
4 AGAFrain (Is it different from (3)?)

5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown
2 EFXshutdown
3 AGFrain
4 AGAFrain (Is it different from (3)?)
5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

For example, AGEXp is a LCTL-formula whereas AGFp is not.

Example 2.9 (CTL∗ or CTL?)

Are the following CTL∗ or CTL formulae? What do they
express?

1 EFAXshutdown
2 EFXshutdown
3 AGFrain
4 AGAFrain (Is it different from (3)?)
5 EFGbroken

6 AG(p→ (EXq ∧ EX¬q))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 61

2 Agent Specification
2.2 CTL and Variants

The precise definition of Kripke structures is given in
Section 4. To understand the following definitions it suffices
to note that:

Given a set of states St (each is a propositional model),
a Kripke modelM is simply a tuple (St,R) where
R ⊆ St× St is a binary relation.

q1Rq2 (also written (q1, q2) ∈ R or R(q1, q2)) means that
state q2 is reachable from state q1 (by executing
certain actions).

The relation R is serial: for all q there is a q′ such that
qRq′. This ensures that our paths are infinite.

Given a state q in a Kripke model, by Λ(q) we mean the
set of all paths determined by the relation R starting in
q: q, q1, q2, . . . , qi, . . . where qRq1 , . . . qiRqi+1, . . .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

2 Agent Specification
2.2 CTL and Variants

Definition 2.10 (Semantics |=CTL∗
)

LetM be a Kripke model, q ∈ St and λ ∈ Λ. The semantics
of LCTL∗- and LCTL-formulae is given by the satisfaction
relation |=CTL∗ for state formulae by
M, q |=CTL∗ p iff λ[0] ∈ π(p) and p ∈ Prop;

M, q |=CTL∗ ¬ϕ iffM, q 6|=CTL∗ ϕ;
M, q |=CTL∗ ϕ ∨ ψ iffM, q |=CTL∗ ϕ orM, q |=CTL∗ ψ;
M, q |=CTL∗ Eϕ iff

there is a path λ ∈ Λ(q) such that
M, λ |=CTL∗ ϕ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

2 Agent Specification
2.2 CTL and Variants

Definition 2.10 (Semantics |=CTL∗
)

LetM be a Kripke model, q ∈ St and λ ∈ Λ. The semantics
of LCTL∗- and LCTL-formulae is given by the satisfaction
relation |=CTL∗ for state formulae by
M, q |=CTL∗ p iff λ[0] ∈ π(p) and p ∈ Prop;
M, q |=CTL∗ ¬ϕ iffM, q 6|=CTL∗ ϕ;

M, q |=CTL∗ ϕ ∨ ψ iffM, q |=CTL∗ ϕ orM, q |=CTL∗ ψ;
M, q |=CTL∗ Eϕ iff

there is a path λ ∈ Λ(q) such that
M, λ |=CTL∗ ϕ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

2 Agent Specification
2.2 CTL and Variants

Definition 2.10 (Semantics |=CTL∗
)

LetM be a Kripke model, q ∈ St and λ ∈ Λ. The semantics
of LCTL∗- and LCTL-formulae is given by the satisfaction
relation |=CTL∗ for state formulae by
M, q |=CTL∗ p iff λ[0] ∈ π(p) and p ∈ Prop;
M, q |=CTL∗ ¬ϕ iffM, q 6|=CTL∗ ϕ;
M, q |=CTL∗ ϕ ∨ ψ iffM, q |=CTL∗ ϕ orM, q |=CTL∗ ψ;

M, q |=CTL∗ Eϕ iff there is a path λ ∈ Λ(q) such that
M, λ |=CTL∗ ϕ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

2 Agent Specification
2.2 CTL and Variants

Definition 2.10 (Semantics |=CTL∗
)

LetM be a Kripke model, q ∈ St and λ ∈ Λ. The semantics
of LCTL∗- and LCTL-formulae is given by the satisfaction
relation |=CTL∗ for state formulae by
M, q |=CTL∗ p iff λ[0] ∈ π(p) and p ∈ Prop;
M, q |=CTL∗ ¬ϕ iffM, q 6|=CTL∗ ϕ;
M, q |=CTL∗ ϕ ∨ ψ iffM, q |=CTL∗ ϕ orM, q |=CTL∗ ψ;
M, q |=CTL∗ Eϕ iff there is a path λ ∈ Λ(q) such that
M, λ |=CTL∗ ϕ;

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iff

M, λ[0] |=CTL∗ ϕ;

M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iff

M, λ 6|=CTL∗ γ;

M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iff

M, λ |=CTL∗ γ orM, λ |=CTL∗ δ;

M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff

λ[1,∞], π |=CTL∗ γ; and

M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff

there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

and for path formulae by:
M, λ |=CTL∗ ϕ iffM, λ[0] |=CTL∗ ϕ;
M, λ |=CTL∗ ¬γ iffM, λ 6|=CTL∗ γ;
M, λ |=CTL∗ γ ∨ δ iffM, λ |=CTL∗ γ orM, λ |=CTL∗ δ;
M, λ |=CTL∗ Xγ iff λ[1,∞], π |=CTL∗ γ; and
M, λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that
M, λ[i,∞] |=CTL∗ δ andM, λ[j,∞] |=CTL∗ γ for all
0 ≤ j < i.

Is this complicated semantics over paths necessary for CTL?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);

M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;
M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;
M, q |=CTL EXϕ iff

there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;
M, q |=CTL EGϕ iff there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;
M, q |=CTL EϕU ψ iff there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);
M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;

M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;
M, q |=CTL EXϕ iff there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;
M, q |=CTL EGϕ iff

there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;
M, q |=CTL EϕU ψ iff there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);
M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;
M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;

M, q |=CTL EXϕ iff there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;
M, q |=CTL EGϕ iff there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;
M, q |=CTL EϕU ψ iff

there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);
M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;
M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;
M, q |=CTL EXϕ iff there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;

M, q |=CTL EGϕ iff there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;
M, q |=CTL EϕU ψ iff there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);
M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;
M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;
M, q |=CTL EXϕ iff there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;
M, q |=CTL EGϕ iff there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;

M, q |=CTL EϕU ψ iff there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

State-based semantics for CTL
M, q |=CTL p iff q ∈ π(p);
M, q |=CTL ¬ϕ iffM, q 6|=CTL ϕ;
M, q |=CTL ϕ ∨ ψ iffM, q |=CTL ϕ orM, q |=CTL ψ;
M, q |=CTL EXϕ iff there is a path λ ∈ Λ(q) such that
M, λ[1] |=CTL ϕ;
M, q |=CTL EGϕ iff there is a path λ ∈ Λ(q) such that
M, λ[i] |=CTL ϕ for every i ≥ 0;
M, q |=CTL EϕU ψ iff there is a path λ ∈ Λ(q) such
thatM, λ[i] |=CTL ψ for some i ≥ 0, andM, λ[j] |=CTL ϕ
for all 0 ≤ j < i.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

2 Agent Specification
2.2 CTL and Variants

LTL as subset of CTL∗
LTL is interpreted over infinite chains (infinite words), but
not over (serial) Kripke structures (which are branching).

To consider LTL as a subset of CTL∗, one can just add
the quantifier A in front of a LTL formula and use the
semantics of CTL∗. For infinite chains, this semantics
coincides with the LTL semantics.

The theorem of Clarke und Draghiescu gives a nice
characterization of those CTL∗ formulae that are
equivalent to LTL formulae. Given a CTL∗ formula ϕ,
we construct ϕ′ by just forgetting all path operators.
Then

ϕ is equivalent to a LTL formula
iff

ϕ and Aϕ′ are equivalent under the semantics of CTL∗.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 66

2 Agent Specification
2.2 CTL and Variants

Application of Clarke and Draghiescu
We consider the LTL formula GFp. Viewed as a CTL∗ formula
it becomes AGFp. But this is equivalent (in CTL∗) to AGAFp,
a CTL formula.

Now we consider the CTL formula EGEFp. It is not
equivalent to any LTL formula. This is because

EGEFp and AGFp
are not equivalent in CTL∗:

q0 q1 q2

p

The first formula holds, the second does not.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 67

2 Agent Specification
2.2 CTL and Variants

LTL as subset of CTL∗ (2)
How do LTL and CTL compare?
The CTL formula AG(p→ (EXq ∧ EX¬q)) describes
Kripke structures of the form in Example 2.6. No LTL
formula can describe this class of Kripke structures.

The LTL formula AF(p ∧ Xp) can not be expressed by a
CTL formula. Check why neither AF(p ∧ AXp) nor
AF(p ∧ EXp) are equivalent. Similarly, the LTL formula
AFGp can not be expressed by a CTL formula.

There is a syntactic characterisation of formulae
expressible in both CTL and LTL. Model checking in this
class can be done more efficiently. We refer to
[Maidl, 2000].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 68

2 Agent Specification
2.2 CTL and Variants

Example 2.11 (Robots and Carriage)

1 2

1

2

1

2

pos0

pos1pos2

Figure 2 : Two
robots and a
carriage.

Two robots push a carriage from
opposite sides.

Carriage can move clockwise or
anticlockwise, or it can remain in the
same place.
3 positions of the carriage.
We label the states with
propositions pos0, pos1, pos2,
respectively, to allow for referring to
the current position of the carriage
in the object language.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 69

2 Agent Specification
2.2 CTL and Variants

Example 2.11 (Robots and Carriage)

1 2

1

2

1

2

pos0

pos1pos2

Figure 2 : Two
robots and a
carriage.

Two robots push a carriage from
opposite sides.
Carriage can move clockwise or
anticlockwise, or it can remain in the
same place.

3 positions of the carriage.
We label the states with
propositions pos0, pos1, pos2,
respectively, to allow for referring to
the current position of the carriage
in the object language.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 69

2 Agent Specification
2.2 CTL and Variants

Example 2.11 (Robots and Carriage)

1 2

1

2

1

2

pos0

pos1pos2

Figure 2 : Two
robots and a
carriage.

Two robots push a carriage from
opposite sides.
Carriage can move clockwise or
anticlockwise, or it can remain in the
same place.
3 positions of the carriage.

We label the states with
propositions pos0, pos1, pos2,
respectively, to allow for referring to
the current position of the carriage
in the object language.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 69

2 Agent Specification
2.2 CTL and Variants

Example 2.11 (Robots and Carriage)

1 2

1

2

1

2

pos0

pos1pos2

Figure 2 : Two
robots and a
carriage.

Two robots push a carriage from
opposite sides.
Carriage can move clockwise or
anticlockwise, or it can remain in the
same place.
3 positions of the carriage.
We label the states with
propositions pos0, pos1, pos2,
respectively, to allow for referring to
the current position of the carriage
in the object language.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 69

2 Agent Specification
2.2 CTL and Variants

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Figure 3 : Two robots and a carriage: A schematic view (left) and
a transition systemM0 that models the scenario (right).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 70

2 Agent Specification
2.2 CTL and Variants

q0

q2 q1

pos0

pos1pos2

M0, q0

|=CTL

EFpos1:

In state q0,
there is a path such that the
carriage will reach position 1
sometime in the future.

The same is not true for all
paths, so we also have:

M0, q0

6|=CTL

AFpos1.

It becomes more interesting if abilities of agents are
considered ATL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 71

2 Agent Specification
2.2 CTL and Variants

q0

q2 q1

pos0

pos1pos2

M0, q0 |=CTL EFpos1: In state q0,
there is a path such that the
carriage will reach position 1
sometime in the future.

The same is not true for all
paths, so we also have:

M0, q0

6|=CTL

AFpos1.

It becomes more interesting if abilities of agents are
considered ATL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 71

2 Agent Specification
2.2 CTL and Variants

q0

q2 q1

pos0

pos1pos2

M0, q0 |=CTL EFpos1: In state q0,
there is a path such that the
carriage will reach position 1
sometime in the future.
The same is not true for all
paths, so we also have:
M0, q0 6|=CTL AFpos1.

It becomes more interesting if abilities of agents are
considered ATL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 71

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

A rocket and a cargo.

The rocket can be moved between London (proposition
roL) and Paris (proposition roP).
The cargo can be in London (caL), Paris (caP), or inside
the rocket (caR).
The rocket can be moved only if it has its fuel tank full
(fuelOK).
When it moves, it consumes fuel, and nofuel holds after
each flight.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

A rocket and a cargo.
The rocket can be moved between London (proposition
roL) and Paris (proposition roP).

The cargo can be in London (caL), Paris (caP), or inside
the rocket (caR).
The rocket can be moved only if it has its fuel tank full
(fuelOK).
When it moves, it consumes fuel, and nofuel holds after
each flight.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

A rocket and a cargo.
The rocket can be moved between London (proposition
roL) and Paris (proposition roP).
The cargo can be in London (caL), Paris (caP), or inside
the rocket (caR).

The rocket can be moved only if it has its fuel tank full
(fuelOK).
When it moves, it consumes fuel, and nofuel holds after
each flight.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

A rocket and a cargo.
The rocket can be moved between London (proposition
roL) and Paris (proposition roP).
The cargo can be in London (caL), Paris (caP), or inside
the rocket (caR).
The rocket can be moved only if it has its fuel tank full
(fuelOK).

When it moves, it consumes fuel, and nofuel holds after
each flight.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

A rocket and a cargo.
The rocket can be moved between London (proposition
roL) and Paris (proposition roP).
The cargo can be in London (caL), Paris (caP), or inside
the rocket (caR).
The rocket can be moved only if it has its fuel tank full
(fuelOK).
When it moves, it consumes fuel, and nofuel holds after
each flight.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX(roP→ nofuel)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 73

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX(roP→ nofuel)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 73

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX(roP→ nofuel)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 73

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX(roP→ nofuel)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 73

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

2 Agent Specification
2.2 CTL and Variants

In our logics, we assumed a serial accessibility relation:
no deadlocks are possible.
One can also allow states with no outgoing transitions.
In that case, in the semantical definition of E on
Slide 138 one has to replace “there is a path” by “there
is an infinite path or one which can not be extended”.
Similar modifications are needed in the definition of
CTL.
One can also add to each state with no outgoing
transitions a special transition leading to a new state
that loops into itself.

How to express that there is no possibility of a deadlock?

AGX> (CTL∗) AGEX> (CTL)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 75

2 Agent Specification
2.2 CTL and Variants

In our logics, we assumed a serial accessibility relation:
no deadlocks are possible.
One can also allow states with no outgoing transitions.
In that case, in the semantical definition of E on
Slide 138 one has to replace “there is a path” by “there
is an infinite path or one which can not be extended”.
Similar modifications are needed in the definition of
CTL.
One can also add to each state with no outgoing
transitions a special transition leading to a new state
that loops into itself.

How to express that there is no possibility of a deadlock?

AGX> (CTL∗)

AGEX> (CTL)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 75

2 Agent Specification
2.2 CTL and Variants

In our logics, we assumed a serial accessibility relation:
no deadlocks are possible.
One can also allow states with no outgoing transitions.
In that case, in the semantical definition of E on
Slide 138 one has to replace “there is a path” by “there
is an infinite path or one which can not be extended”.
Similar modifications are needed in the definition of
CTL.
One can also add to each state with no outgoing
transitions a special transition leading to a new state
that loops into itself.

How to express that there is no possibility of a deadlock?

AGX> (CTL∗) AGEX> (CTL)
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 75

2 Agent Specification
2.2 CTL and Variants

A Venn diagram showing typical formulae in the respective
areas.

CTL?

CTLLTL

A(F(p ^ Xp)) A(pUq) AG(EFq)

A(F(p ^ Xp)) _ AG(EFq)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 76

2 Agent Specification
2.2 CTL and Variants

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Figure 4 : Two robots and a carriage: a schematic view (left) and
a transition systemM0 that models the scenario (right).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 77

2 Agent Specification
2.3 ATL and variants

2.3 ATL and variants

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

2 Agent Specification
2.3 ATL and variants

Alternating-time Temporal Logics

ATL, ATL∗ [Alur et al. 1997]
Temporal logic meets game theory
Modeling abilities of multiple agents
Main idea: cooperation modalities

〈〈A〉〉ϕ: coalition A has a collective strategy to enforce ϕ

Enforcement is understood in the game-theoretical sense:
There is a winning strategy.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 79

2 Agent Specification
2.3 ATL and variants

Alternating-time Temporal Logics

ATL, ATL∗ [Alur et al. 1997]
Temporal logic meets game theory
Modeling abilities of multiple agents
Main idea: cooperation modalities

〈〈A〉〉ϕ: coalition A has a collective strategy to enforce ϕ

Enforcement is understood in the game-theoretical sense:
There is a winning strategy.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 79

2 Agent Specification
2.3 ATL and variants

The syntax is given as for the computation-tree logics.

Definition 2.12 (Language LATL∗[Alur et al., 1997])

The language LATL∗ is given by all formulae generated by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉γ where
γ ::= ϕ | ¬γ | γ ∨ γ | γ U γ | jγ,

A ⊆ Agt, and p ∈ Prop. Formulae ϕ (resp. γ) are called state
(resp. path) formulae.

Note that we are using now the symbol “ j” instead of “X”
as it is more custom when dealing with ATL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 80

2 Agent Specification
2.3 ATL and variants

The language LATLrestricts LATL∗ in the same way as LCTL

restricts LCTL∗: Each temporal operator must be directly
preceded by a cooperation modality.

Definition 2.13 (Language LATL[Alur et al., 1997])

The language LATL is given by all formulae generated by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉 jϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ
where A ⊆ Agt and p ∈ Prop.

Note that we are using now the symbol “�” instead of “G”
as it is more custom when dealing with ATL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 81

2 Agent Specification
2.3 ATL and variants

The language LATL+restricts LATL∗ but extends LATL. It allows
for Boolean combinations of path formulae.

Definition 2.14 (Language LATL+)

The language LATL+ is given by all formulae generated by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ∨ϕ | 〈〈A〉〉γ, γ ::= ¬γ | γ ∨ γ | jϕ | ϕU ϕ.

where A ⊆ Agt and p ∈ Prop.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

2 Agent Specification
2.3 ATL and variants

The language LATL+restricts LATL∗ but extends LATL. It allows
for Boolean combinations of path formulae.

Definition 2.14 (Language LATL+)

The language LATL+ is given by all formulae generated by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ∨ϕ | 〈〈A〉〉γ, γ ::= ¬γ | γ ∨ γ | jϕ | ϕU ϕ.

where A ⊆ Agt and p ∈ Prop.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

2 Agent Specification
2.3 ATL and variants

ATL Models: Concurrent Game
Structures

Agents, actions, transitions, atomic propositions
Atomic propositions + interpretation
Actions are abstract

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

push,w
ait

wait,push

pos2

w
ait,pushw

ai
t,p

us
h

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 83

2 Agent Specification
2.3 ATL and variants

ATL Models: Concurrent Game
Structures

Agents, actions, transitions, atomic propositions
Atomic propositions + interpretation
Actions are abstract

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push
pu

sh
,w

ai
t

push,wait

push,w
ait

wait,push

pos2

w
ait,pushw

ai
t,p

us
h

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 83

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;
St: a set of states;
π : St→ 2Prop: a valuation of propositions;
Act: a finite set of (atomic) actions;
d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;

St: a set of states;
π : St→ 2Prop: a valuation of propositions;
Act: a finite set of (atomic) actions;
d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;
St: a set of states;

π : St→ 2Prop: a valuation of propositions;
Act: a finite set of (atomic) actions;
d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;
St: a set of states;
π : St→ 2Prop: a valuation of propositions;

Act: a finite set of (atomic) actions;
d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;
St: a set of states;
π : St→ 2Prop: a valuation of propositions;
Act: a finite set of (atomic) actions;

d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Definition 2.15 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents;
St: a set of states;
π : St→ 2Prop: a valuation of propositions;
Act: a finite set of (atomic) actions;
d : Agt× St→ 2Act defines actions available to an agent
in a state;
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2 Agent Specification
2.3 ATL and variants

Recall and information
A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation.

Two types of “situations”: Decisions are based on

the current state only (memoryless strategies)
sa : St→ Act.

on the whole history of events that have happened
(perfect recall strategies)

sa : St+ → Act.

We also distinguish between agents with
perfect information (all states are distinguishable).

imperfect information (some state are
indistinguishable).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

2 Agent Specification
2.3 ATL and variants

Recall and information
A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation.

Two types of “situations”: Decisions are based on
the current state only (memoryless strategies)

sa : St→ Act.

on the whole history of events that have happened
(perfect recall strategies)

sa : St+ → Act.

We also distinguish between agents with
perfect information (all states are distinguishable).

imperfect information (some state are
indistinguishable).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

2 Agent Specification
2.3 ATL and variants

Recall and information
A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation.

Two types of “situations”: Decisions are based on
the current state only (memoryless strategies)

sa : St→ Act.

on the whole history of events that have happened
(perfect recall strategies)

sa : St+ → Act.

We also distinguish between agents with
perfect information (all states are distinguishable).

imperfect information (some state are
indistinguishable).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

2 Agent Specification
2.3 ATL and variants

Recall and information
A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation.

Two types of “situations”: Decisions are based on
the current state only (memoryless strategies)

sa : St→ Act.

on the whole history of events that have happened
(perfect recall strategies)

sa : St+ → Act.

We also distinguish between agents with
perfect information (all states are distinguishable).

imperfect information (some state are
indistinguishable).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

2 Agent Specification
2.3 ATL and variants

Perfect Information Strategies

Definition 2.16 (IR- and Ir-strategies)

A perfect information perfect recall strategy for
agent a (IR-strategy for short) is a function

sa : St+ → Act such that sa(q0q1 . . . qn) ∈ da(qn).
The set of such strategies is denoted by ΣIR

a .

A perfect information memoryless strategy for agent
a (Ir-strategy for short) is given by a function

sa : St→ Act where sa(q) ∈ da(q).
The set of such strategies is denoted by ΣIr

a .

i (resp. I) stands for imperfect (resp. perfect) information and r
(resp. R) for imperfect (resp. perfect) recall. [Schobbens, 2004]

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 86

2 Agent Specification
2.3 ATL and variants

Perfect Information Strategies

Definition 2.16 (IR- and Ir-strategies)

A perfect information perfect recall strategy for
agent a (IR-strategy for short) is a function

sa : St+ → Act such that sa(q0q1 . . . qn) ∈ da(qn).
The set of such strategies is denoted by ΣIR

a .

A perfect information memoryless strategy for agent
a (Ir-strategy for short) is given by a function

sa : St→ Act where sa(q) ∈ da(q).
The set of such strategies is denoted by ΣIr

a .

i (resp. I) stands for imperfect (resp. perfect) information and r
(resp. R) for imperfect (resp. perfect) recall. [Schobbens, 2004]

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 86

2 Agent Specification
2.3 ATL and variants

Perfect Information Strategies

Definition 2.16 (IR- and Ir-strategies)

A perfect information perfect recall strategy for
agent a (IR-strategy for short) is a function

sa : St+ → Act such that sa(q0q1 . . . qn) ∈ da(qn).
The set of such strategies is denoted by ΣIR

a .

A perfect information memoryless strategy for agent
a (Ir-strategy for short) is given by a function

sa : St→ Act where sa(q) ∈ da(q).
The set of such strategies is denoted by ΣIr

a .

i (resp. I) stands for imperfect (resp. perfect) information and r
(resp. R) for imperfect (resp. perfect) recall. [Schobbens, 2004]

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 86

2 Agent Specification
2.3 ATL and variants

Some Notation
The following holds for all kind of strategies:

A collective strategy for a group of agents
A = {a1, . . . , ar} ⊆ Agt is a set

sA = {sa | a ∈ A}
of strategies, one per agent from A.

sA|a, we denote agent a’s part of the collective
strategy sA, sA|a = sA ∩ Σa.
s∅ = ∅ denotes the strategy of the empty coalition.
ΣA denotes the set of all collective strategies of A.
Σ = ΣAgt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

2 Agent Specification
2.3 ATL and variants

Some Notation
The following holds for all kind of strategies:

A collective strategy for a group of agents
A = {a1, . . . , ar} ⊆ Agt is a set

sA = {sa | a ∈ A}
of strategies, one per agent from A.
sA|a, we denote agent a’s part of the collective
strategy sA, sA|a = sA ∩ Σa.

s∅ = ∅ denotes the strategy of the empty coalition.
ΣA denotes the set of all collective strategies of A.
Σ = ΣAgt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

2 Agent Specification
2.3 ATL and variants

Some Notation
The following holds for all kind of strategies:

A collective strategy for a group of agents
A = {a1, . . . , ar} ⊆ Agt is a set

sA = {sa | a ∈ A}
of strategies, one per agent from A.
sA|a, we denote agent a’s part of the collective
strategy sA, sA|a = sA ∩ Σa.
s∅ = ∅ denotes the strategy of the empty coalition.

ΣA denotes the set of all collective strategies of A.
Σ = ΣAgt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

2 Agent Specification
2.3 ATL and variants

Some Notation
The following holds for all kind of strategies:

A collective strategy for a group of agents
A = {a1, . . . , ar} ⊆ Agt is a set

sA = {sa | a ∈ A}
of strategies, one per agent from A.
sA|a, we denote agent a’s part of the collective
strategy sA, sA|a = sA ∩ Σa.
s∅ = ∅ denotes the strategy of the empty coalition.
ΣA denotes the set of all collective strategies of A.

Σ = ΣAgt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

2 Agent Specification
2.3 ATL and variants

Some Notation
The following holds for all kind of strategies:

A collective strategy for a group of agents
A = {a1, . . . , ar} ⊆ Agt is a set

sA = {sa | a ∈ A}
of strategies, one per agent from A.
sA|a, we denote agent a’s part of the collective
strategy sA, sA|a = sA ∩ Σa.
s∅ = ∅ denotes the strategy of the empty coalition.
ΣA denotes the set of all collective strategies of A.
Σ = ΣAgt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,
αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,
αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,

αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,
αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and

o(qi−1, α
i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,
αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Outcome of a strategy
out(q, sA)= set of all paths that may occur
when agents A execute sA from state q onward.

Definition 2.17 (Outcome)

λ = q0q1 . . . ∈ St ∈ out(q, sA) ⊆ Stω iff

1 q0 = q

2 for each i = 1, . . . there is a tuple (αi−11 , . . . , αi−1k) ∈ Actk
such that

αi−1a ∈ da(qi−1) for each a ∈ Agt,
αi−1a = sA|a(q0q1 . . . qi−1) for each a ∈ A, and
o(qi−1, α

i−1
1 , . . . , αi−1k) = qi.

For an Ir-strategy replace “sA|a(q0q1 . . . qi−1)” by
“sA|a(qi−1)”.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)

M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)

M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)

M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;

M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)

M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;

M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and
M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)

M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)
M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Definition 2.18 (Perfect information
semantics)
M, q |=Ix p iff p is in π(q);
M, q |=Ix ϕ ∨ ψ iffM, q |=Ix ϕ orM, q |=Ix ψ;

M, q |=Ix 〈〈A〉〉Φ iff there is a collective Ix-strategy sA
such that, for each path λ ∈ out(q, sA),
we haveM, λ |=Ix Φ.

M, λ |=Ix
jϕ iffM, λ[1,∞] |=Ix ϕ;

M, λ |=Ix ♦ϕ iffM, λ[i,∞] |=Ix ϕ for some i ≥ 0;
M, λ |=Ix �ϕ iffM, λ[i,∞] |=Ix ϕ for all i ≥ 0;
M, λ |=Ix ϕU ψ iff M, λ[i,∞] |=Ix ψ for some i ≥ 0, and

M, λ[j,∞] |=Ix ϕ forall 0 ≤ j ≤ i.

Note that temporal formulae and the Boolean connectives
are handled as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

push,w
ait

wait,push

pos2

w
ait,pushw

ai
t,p

us
h

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

wait

waitpush

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait

wait,wait wait,waitwait

push,push

push,push push,push

pu
sh

,w
ai

t

pu
sh

push,wait

w
ait,push

w
ait

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t

pos2

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait

wait,wait wait,waitwait

push,push

push,push push,push

pu
sh

,w
ai

t

pu
sh

push,wait

w
ait,push

w
ait

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t

pos2

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait,wait

wait,wait wait,waitwait,wait

push,push

push,pushpush,push push,push

pu
sh

,w
ai

t

pu
sh

,w
ai

t

push,wait

w
ait,push

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage

q0

q2 q1q1

pos0

pos1pos1

wait,waitwait,wait

wait,wait wait,waitwait,wait

push,push

push,pushpush,push push,push

pu
sh

,w
ai

t

pu
sh

,w
ai

t

push,wait

w
ait,push

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉�¬pos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

2 Agent Specification
2.3 ATL and variants

Definition 2.19 (ATLIx, ATL+
Ix, ATL∗Ix, ATL, ATL∗)

We define ATLIx, ATL+
Ix, and ATL∗Ix as the logics (LATL, |=Ix),

(LATL+ , |=Ix) and (LATL∗ , |=Ix) where x ∈ {r, R}, respectively.
Moreover, we use ATL (resp. ATL∗) as an abbreviation for
ATLIR (resp. ATL∗IR).

Intuitively, a logic is given by the set of all valid formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

2 Agent Specification
2.3 ATL and variants

Definition 2.19 (ATLIx, ATL+
Ix, ATL∗Ix, ATL, ATL∗)

We define ATLIx, ATL+
Ix, and ATL∗Ix as the logics (LATL, |=Ix),

(LATL+ , |=Ix) and (LATL∗ , |=Ix) where x ∈ {r, R}, respectively.
Moreover, we use ATL (resp. ATL∗) as an abbreviation for
ATLIR (resp. ATL∗IR).

Intuitively, a logic is given by the set of all valid formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

2 Agent Specification
2.3 ATL and variants

Definition 2.19 (ATLIx, ATL+
Ix, ATL∗Ix, ATL, ATL∗)

We define ATLIx, ATL+
Ix, and ATL∗Ix as the logics (LATL, |=Ix),

(LATL+ , |=Ix) and (LATL∗ , |=Ix) where x ∈ {r, R}, respectively.
Moreover, we use ATL (resp. ATL∗) as an abbreviation for
ATLIR (resp. ATL∗IR).

Intuitively, a logic is given by the set of all valid formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

2 Agent Specification
2.3 ATL and variants

Theorem 2.20
For LATL, the perfect recall semantics is equivalent to the
memoryless semantics under perfect information, i.e.,
M, q |=IR ϕ iffM, q |=Ir ϕ. Both semantics are different for
LATL∗. That is

ATL = ATLIr = ATLIR.

Proof idea.
The first “non-looping part” of each path has to satisfy a
formula. Exercise

The property has been first observed in [Schobbens, 2004]
but it follows from [Alur et al., 2002] in a straightforward
way.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 92

2 Agent Specification
2.3 ATL and variants

Theorem 2.20
For LATL, the perfect recall semantics is equivalent to the
memoryless semantics under perfect information, i.e.,
M, q |=IR ϕ iffM, q |=Ir ϕ. Both semantics are different for
LATL∗. That is

ATL = ATLIr = ATLIR.

Proof idea.
The first “non-looping part” of each path has to satisfy a
formula. Exercise

The property has been first observed in [Schobbens, 2004]
but it follows from [Alur et al., 2002] in a straightforward
way.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 92

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage (2)

1 2

1

2

1

2

pos0

pos1pos2

1 2

halt

q0

q2 q1

pos0

pos1

wait,wait

wait,wait

halt,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

halt,push qh

halt

What about 〈〈1, 2〉〉(♦pos1 ∧ ♦halt)?
M, q0

|=

IR〈〈1, 2〉〉(♦pos1 ∧ ♦halt)
M, q0

6|=

Ir〈〈1, 2〉〉(♦pos1 ∧ ♦halt)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 93

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage (2)

1 2

1

2

1

2

pos0

pos1pos2

1 2

halt q0

q2 q1

pos0

pos1

wait,wait

wait,wait

halt,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

halt,push qh

halt

What about 〈〈1, 2〉〉(♦pos1 ∧ ♦halt)?
M, q0 |= IR〈〈1, 2〉〉(♦pos1 ∧ ♦halt)
M, q0

6|=

Ir〈〈1, 2〉〉(♦pos1 ∧ ♦halt)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 93

2 Agent Specification
2.3 ATL and variants

Example: Robots and Carriage (2)

1 2

1

2

1

2

pos0

pos1pos2

1 2

halt q0

q2 q1

pos0

pos1

wait,wait

wait,wait

halt,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

halt,push qh

halt

What about 〈〈1, 2〉〉(♦pos1 ∧ ♦halt)?
M, q0 |= IR〈〈1, 2〉〉(♦pos1 ∧ ♦halt)
M, q0 6|= Ir〈〈1, 2〉〉(♦pos1 ∧ ♦halt)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 93

2 Agent Specification
2.4 Imperfect Information

2.4 Imperfect Information

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 94

2 Agent Specification
2.4 Imperfect Information

Imperfect information

How can we reason about agents/extensive games with
imperfect information?

We combine ATL∗ and epistemic logic.

We extend CGSS with indistinguishability relations
∼a⊆ St× St, one per agent. The relations are assumed
to be equivalence relations.

We interpret 〈〈A〉〉 epistemically
(|=iR and |=ir)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 95

2 Agent Specification
2.4 Imperfect Information

Imperfect information

How can we reason about agents/extensive games with
imperfect information?

We combine ATL∗ and epistemic logic.

We extend CGSS with indistinguishability relations
∼a⊆ St× St, one per agent. The relations are assumed
to be equivalence relations.

We interpret 〈〈A〉〉 epistemically
(|=iR and |=ir)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 95

2 Agent Specification
2.4 Imperfect Information

Imperfect information

How can we reason about agents/extensive games with
imperfect information?

We combine ATL∗ and epistemic logic.

We extend CGSS with indistinguishability relations
∼a⊆ St× St, one per agent. The relations are assumed
to be equivalence relations.

We interpret 〈〈A〉〉 epistemically
(|=iR and |=ir)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 95

2 Agent Specification
2.4 Imperfect Information

Definition 2.21 (CEGS)

A concurrent epistemic game structure (CEGS) is a tuple

M = (Agt, St,Π, π, Act, d, o, {∼a| a ∈ Agt})

with
(Agt, St,Π, π, Act, d, o) a CGS and
∼a⊆ St× St equivalence relations (indistinguishability
relations).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 96

2 Agent Specification
2.4 Imperfect Information

Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh
,w
ai
t

push,wait

wait,push
push,w

ait

wait,push

wa
it,
pu
sh

pos2

1 2

What about 〈〈Agt〉〉 jpos1 in q0?
M, q0

|=

Ir〈〈Agt〉〉 jpos1
M, q0

6|=

ir〈〈Agt〉〉 jpos1
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 97

2 Agent Specification
2.4 Imperfect Information

Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh
,w
ai
t

push,wait

wait,push
push,w

ait

wait,push

wa
it,
pu
sh

pos2

1 2

What about 〈〈Agt〉〉 jpos1 in q0?
M, q0 |= Ir〈〈Agt〉〉 jpos1
M, q0

6|=

ir〈〈Agt〉〉 jpos1
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 97

2 Agent Specification
2.4 Imperfect Information

Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh
,w
ai
t

push,wait

wait,push
push,w

ait

wait,push

wa
it,
pu
sh

pos2

1 2

What about 〈〈Agt〉〉 jpos1 in q0?
M, q0 |= Ir〈〈Agt〉〉 jpos1
M, q0 6|= ir〈〈Agt〉〉 jpos1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 97

2 Agent Specification
2.4 Imperfect Information

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉Φ = A can enforce Φ

It should at least mean that A are able to identify and
execute the right strategy!

Executable strategies = uniform strategies

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 98

2 Agent Specification
2.4 Imperfect Information

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉Φ = A can enforce Φ

It should at least mean that A are able to identify and
execute the right strategy!

Executable strategies = uniform strategies

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 98

2 Agent Specification
2.4 Imperfect Information

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉Φ = A can enforce Φ

It should at least mean that A are able to identify and
execute the right strategy!

Executable strategies = uniform strategies

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 98

2 Agent Specification
2.4 Imperfect Information

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉Φ = A can enforce Φ

It should at least mean that A are able to identify and
execute the right strategy!

Executable strategies = uniform strategies

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 98

2 Agent Specification
2.4 Imperfect Information

Definition 2.22 (Uniform strategy)

Strategy sa is uniform iff it specifies the same choices for
indistinguishable situations :

Memoryless strategies:
if q ∼a q′ then sa(q) = sa(q

′).

Perfect recall:
if λ ≈a λ′ then⇒ sa(λ) = sa(λ

′),
where λ ≈a λ′ iff λ[i] ∼a λ′[i] for every i.

A collective strategy is uniform iff it consists only of uniform
individual strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 99

2 Agent Specification
2.4 Imperfect Information

Definition 2.22 (Uniform strategy)

Strategy sa is uniform iff it specifies the same choices for
indistinguishable situations :

Memoryless strategies:
if q ∼a q′ then sa(q) = sa(q

′).
Perfect recall:

if λ ≈a λ′ then⇒ sa(λ) = sa(λ
′),

where λ ≈a λ′ iff λ[i] ∼a λ′[i] for every i.

A collective strategy is uniform iff it consists only of uniform
individual strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 99

2 Agent Specification
2.4 Imperfect Information

Definition 2.22 (Uniform strategy)

Strategy sa is uniform iff it specifies the same choices for
indistinguishable situations :

Memoryless strategies:
if q ∼a q′ then sa(q) = sa(q

′).
Perfect recall:

if λ ≈a λ′ then⇒ sa(λ) = sa(λ
′),

where λ ≈a λ′ iff λ[i] ∼a λ′[i] for every i.

A collective strategy is uniform iff it consists only of uniform
individual strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 99

2 Agent Specification
2.4 Imperfect Information

Imperfect Information Strategies

Definition 2.23 (IR- and Ir-strategies)

A imperfect information perfect recall strategy for
agent a (iR-strategy for short) is a uniform IR-strategy.

A imperfect information memoryless strategy for
agent a (ir-strategy for short) is a uniform Ir-strategy.

The outcome is defined as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 100

2 Agent Specification
2.4 Imperfect Information

Imperfect Information Strategies

Definition 2.23 (IR- and Ir-strategies)

A imperfect information perfect recall strategy for
agent a (iR-strategy for short) is a uniform IR-strategy.
A imperfect information memoryless strategy for
agent a (ir-strategy for short) is a uniform Ir-strategy.

The outcome is defined as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 100

2 Agent Specification
2.4 Imperfect Information

Imperfect Information Strategies

Definition 2.23 (IR- and Ir-strategies)

A imperfect information perfect recall strategy for
agent a (iR-strategy for short) is a uniform IR-strategy.
A imperfect information memoryless strategy for
agent a (ir-strategy for short) is a uniform Ir-strategy.

The outcome is defined as before.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 100

2 Agent Specification
2.4 Imperfect Information

Imperfect Information Semantics
The imperfect information semantics is defined as before,
only the clause for

M, q |=Ix 〈〈A〉〉ϕ iff there is a collective Ix-strategy sA such
that, for each path λ ∈ out(q, sA), we haveM, λ |=Ix ϕ.

is replaced by

M, q |=ix 〈〈A〉〉ϕ iff there is a uniform ix-strategy
sA such that, for each path λ ∈ ⋃

q′:q∼Aq′
out(q′, sA), we have

M, λ |=ix ϕ

where x ∈ {r, R} and ∼A:= ∪a∈A ∼a.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 101

2 Agent Specification
2.4 Imperfect Information

Imperfect Information Semantics
The imperfect information semantics is defined as before,
only the clause for

M, q |=Ix 〈〈A〉〉ϕ iff there is a collective Ix-strategy sA such
that, for each path λ ∈ out(q, sA), we haveM, λ |=Ix ϕ.

is replaced by

M, q |=ix 〈〈A〉〉ϕ iff there is a uniform ix-strategy
sA such that, for each path λ ∈ ⋃

q′:q∼Aq′
out(q′, sA), we have

M, λ |=ix ϕ

where x ∈ {r, R} and ∼A:= ∪a∈A ∼a.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 101

2 Agent Specification
2.4 Imperfect Information

Remark 2.24
The last definition models that “everybody in A knows that
ϕ”.

The fixed-point characterisation does not hold anymore!

Theorem 2.25
The following formulae are not valid for ATLir:
〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2).

Proof.
 : Exercise.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 102

2 Agent Specification
2.4 Imperfect Information

Remark 2.24
The last definition models that “everybody in A knows that
ϕ”.

The fixed-point characterisation does not hold anymore!

Theorem 2.25
The following formulae are not valid for ATLir:
〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2).

Proof.
 : Exercise.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 102

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u ∀λ ∈
⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u ∀λ ∈
⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff

not (∃s ∈ Σir
u ∀λ ∈

⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u

∀λ ∈ ⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u ∀λ ∈
⋃
q∈{q1,q2} out(q, s)

∃i ∈ N0 :
M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u ∀λ ∈
⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.4 Imperfect Information

Proof idea

We construct a coun-
terexample for

〈〈1〉〉♦p ↔ p ∨
〈〈1〉〉 m〈〈1〉〉♦p

p

α α

α

β β

β

ζ ζ
q1 q2

q3

q4 q5

1

qM, q1 6|=ir 〈〈1〉〉♦p iff
not (∃s ∈ Σir

u ∀λ ∈
⋃
q∈{q1,q2} out(q, s)∃i ∈ N0 :

M, λ[i] |=ir p)

M, q1 |=ir p ∨ 〈〈1〉〉 l〈〈1〉〉♦p
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

2 Agent Specification
2.5 Dynamic Logics

2.5 Dynamic Logics

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 104

2 Agent Specification
2.5 Dynamic Logics

1st idea: Consider actions or atomic programs
α. Each such α defines a transition
(accessibility relation) from worlds
into worlds.

2nd idea: We need statements about the outcome
of actions:

[α]ϕ: “after each execution of α,
ϕ holds,
〈α〉ϕ: “after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 105

2 Agent Specification
2.5 Dynamic Logics

1st idea: Consider actions or atomic programs
α. Each such α defines a transition
(accessibility relation) from worlds
into worlds.

2nd idea: We need statements about the outcome
of actions:

[α]ϕ: “after each execution of α,
ϕ holds,
〈α〉ϕ: “after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 105

2 Agent Specification
2.5 Dynamic Logics

1st idea: Consider actions or atomic programs
α. Each such α defines a transition
(accessibility relation) from worlds
into worlds.

2nd idea: We need statements about the outcome
of actions:

[α]ϕ: “after each execution of α,
ϕ holds,
〈α〉ϕ: “after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 105

2 Agent Specification
2.5 Dynamic Logics

3rd idea: Programs/actions can be combined
(sequentially, nondeterministically,
iteratively), e.g.:

[α; β]ϕ

would mean “after each execution of α
and then β, formula ϕ holds”.

Can we combine these three ideas and come up
with a language and logic where we can express
all these features?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 106

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ :

Some terminating execution of π leads to a
state with information ϕ

[π]ϕ :

Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:

π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ :

Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:

π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ : Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:

π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ : Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:

π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ : Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:
π ∪ π′ : Nondeterministic choice

π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ : Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:
π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition

π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic over arbitrary programs

Example 2.26 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {π | π is a program}
What do the following operators express?

〈π〉ϕ : Some terminating execution of π leads to a
state with information ϕ

[π]ϕ : Each terminating execution of π leads to a
state with information ϕ

It would be nice if we could combine simple programs:
π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

2 Agent Specification
2.5 Dynamic Logics

What do the following statements express?
〈π∗〉ϕ↔ ϕ ∨ 〈π; π∗〉ϕ :

A state with information ϕ is reached
by executing π a finite number of times iff the
current state satisfies ϕ or we can execute π
once and reach a state in which ϕ holds by
executing π a finite number of times.

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ) :

 Exercise.

Do these formulae always hold?
How can we actually use this logic?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 108

2 Agent Specification
2.5 Dynamic Logics

What do the following statements express?
〈π∗〉ϕ↔ ϕ ∨ 〈π; π∗〉ϕ : A state with information ϕ is reached

by executing π a finite number of times iff the
current state satisfies ϕ or we can execute π
once and reach a state in which ϕ holds by
executing π a finite number of times.

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ) :

 Exercise.

Do these formulae always hold?
How can we actually use this logic?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 108

2 Agent Specification
2.5 Dynamic Logics

What do the following statements express?
〈π∗〉ϕ↔ ϕ ∨ 〈π; π∗〉ϕ : A state with information ϕ is reached

by executing π a finite number of times iff the
current state satisfies ϕ or we can execute π
once and reach a state in which ϕ holds by
executing π a finite number of times.

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ) : Exercise.

Do these formulae always hold?
How can we actually use this logic?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 108

2 Agent Specification
2.5 Dynamic Logics

What do the following statements express?
〈π∗〉ϕ↔ ϕ ∨ 〈π; π∗〉ϕ : A state with information ϕ is reached

by executing π a finite number of times iff the
current state satisfies ϕ or we can execute π
once and reach a state in which ϕ holds by
executing π a finite number of times.

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ) : Exercise.

Do these formulae always hold?
How can we actually use this logic?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 108

2 Agent Specification
2.5 Dynamic Logics

Dynamic Logic Models
A model is simply a Kripke structure where each atomic
program constitutes an accessibility relation.

Definition 2.27 (Labelled Transition System)

A labelled transition system is a pair

〈St, { α−→: α ∈ L}〉

where St is a non-empty set of states and L is a non-empty
set of labels and for each α ∈ L: α−→⊆ St× St.

What are concrete examples of such systems?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 109

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 110

2 Agent Specification
2.5 Dynamic Logics

Definition 2.28 (Dynamic Logic Model)

A model of propositional dynamic logic is given by a
labelled transition systems and a valuation of propositions.

For atomic programs α, the semantics is easily defined:

Definition 2.29 (Semantics of DL)
M, s |= [α]ϕ iff for all t such that s α−→ t, we haveM, t |=

ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 111

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt

start→ ¬[try]halt
start→ 〈try〉[wait]halt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

2 Agent Specification
2.5 Dynamic Logics

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

2 Agent Specification
2.5 Dynamic Logics

But what if we want to consider complex programs?
First of all, we have to make sure that we can build such
programs.

Definition 2.30 (Composite labels)

We require that the set of labels forms a Kleene algebra
〈L, ;,∪∪∪,∗∗∗〉. We also assume that the set of labels contains
constructs of the form “ϕ?”, whenever ϕ is a formula not
involving any modalities.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 113

2 Agent Specification
2.5 Dynamic Logics

What has this to do with programs?

“;” means sequential composition,
“∪∪∪” means nondeterministic choice,
“∗∗∗” means finite iteration (regular expr.),
“ϕ?” means test.

if ϕ then a else b (ϕ?;a) ∪ (¬ϕ?;b)

while ϕ do a (ϕ?;a)∗ ; (¬ϕ?)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 114

2 Agent Specification
2.5 Dynamic Logics

Definition 2.31 (Condition on Labels)

We assume that the labels obey the following conditions:

s
α;β−→ t iff s α−→ s′ and s′

β−→ t,

s
α∪β−→ t iff s α−→ t or s

β−→ t,

s
α∗−→ t is the reflexive and transitive closure of s α−→ t,

s
ϕ?−→ t iff s = t and s |=M ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 115

2 Agent Specification
2.5 Dynamic Logics

We are now ready to define the semantics of DL for arbitrary
complex expressions of labels.

Definition 2.32 (Semantics of DL)

We assume that the set of labels forms a Kleene algebra and
that the conditions of Definition 2.31 hold. Then we define,
as in Definition 2.29:
M, s |= [α]ϕ iff for all t st. s α−→ t, we haveM, t |= ϕ.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 116

2 Agent Specification
2.5 Dynamic Logics

One of the most appealing aspects of dynamic logic is
the close link to Hoare Logic, and partial correctness
assertions in general [Parikh, 1979].
Thus, {p}α{q} in Hoare Logic can be expressed as
p⇒ [α]q in PDL, while termination of a program α can
be expressed by 〈α〉>.
These aspects make dynamic logic a viable alternative
to temporal logic in providing the basis for agent
specification formalisms.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 117

3 From Specification to Implementation

3. From Specification to Implementation

3 From Specification to Implementation
Checking Implementations
Refinement
Synthesis
Specifications as Programs

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 118

3 From Specification to Implementation

We have seen how a logical formalism can be used to
specify agent behaviour.

But there remains a gap between such a specification and
an actual implemented agent system.

How might we bridge this gap?

And bridge it reliably?

Approaches we might use include:
formal verification
refinement
synthesis
direct execution

We will briefly review these next.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 119

3 From Specification to Implementation

We have seen how a logical formalism can be used to
specify agent behaviour.

But there remains a gap between such a specification and
an actual implemented agent system.

How might we bridge this gap? And bridge it reliably?

Approaches we might use include:
formal verification
refinement
synthesis
direct execution

We will briefly review these next.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 119

3 From Specification to Implementation

We have seen how a logical formalism can be used to
specify agent behaviour.

But there remains a gap between such a specification and
an actual implemented agent system.

How might we bridge this gap? And bridge it reliably?

Approaches we might use include:
formal verification
refinement
synthesis
direct execution

We will briefly review these next.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 119

3 From Specification to Implementation

We have seen how a logical formalism can be used to
specify agent behaviour.

But there remains a gap between such a specification and
an actual implemented agent system.

How might we bridge this gap? And bridge it reliably?

Approaches we might use include:
formal verification
refinement
synthesis
direct execution

We will briefly review these next.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 119

3 From Specification to Implementation
3.1 Checking Implementations

3.1 Checking
Implementations

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 120

3 From Specification to Implementation
3.1 Checking Implementations

Towards Formal Verification
The most likely way for bridging the gap is for someone else
to implement an agent.

In most cases such implementations will be developed by
informal approaches, such as traditional software
engineering methods.

In this case, a formal specification represents a formal
requirement that we can check the implementations
against.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 121

3 From Specification to Implementation
3.2 Refinement

3.2 Refinement

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 122

3 From Specification to Implementation
3.2 Refinement

Refinement
ϕS provides some logical specification of agent behaviour

ϕS might be
quite vague and high-level, and
non-deterministic

We can refine this to a new specification, ϕR
ϕR will typically be

more detailed and specific,
more deterministic,
and closer to a ‘real’ implementation.

Crucially any behaviour allowed by our refined specification,
ϕR, must be allowed within the original specification, ϕS.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

3 From Specification to Implementation
3.2 Refinement

Refinement
ϕS provides some logical specification of agent behaviour

ϕS might be
quite vague and high-level, and
non-deterministic

We can refine this to a new specification, ϕR
ϕR will typically be

more detailed and specific,
more deterministic,
and closer to a ‘real’ implementation.

Crucially any behaviour allowed by our refined specification,
ϕR, must be allowed within the original specification, ϕS.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

3 From Specification to Implementation
3.2 Refinement

Refinement
ϕS provides some logical specification of agent behaviour

ϕS might be
quite vague and high-level, and
non-deterministic

We can refine this to a new specification, ϕR
ϕR will typically be

more detailed and specific,
more deterministic,
and closer to a ‘real’ implementation.

Crucially any behaviour allowed by our refined specification,
ϕR, must be allowed within the original specification, ϕS.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

3 From Specification to Implementation
3.2 Refinement

Refinement
ϕS provides some logical specification of agent behaviour

ϕS might be
quite vague and high-level, and
non-deterministic

We can refine this to a new specification, ϕR
ϕR will typically be

more detailed and specific,
more deterministic,
and closer to a ‘real’ implementation.

Crucially any behaviour allowed by our refined specification,
ϕR, must be allowed within the original specification, ϕS.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

3 From Specification to Implementation
3.2 Refinement

Example 1

Originally, we specify the system behaviour to be ‘a ∨ b’.

But then refine it (becoming more deterministic) to just ‘b’.

Example 2

Imagine we specify a Mammal.

We might later refine this to specify a Dog!

This removes some irrelevant possibilities (e.g.
“two-legged”) but all behaviours of a dog are still possible
behaviours of a mammal.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

3 From Specification to Implementation
3.2 Refinement

Example 1

Originally, we specify the system behaviour to be ‘a ∨ b’.

But then refine it (becoming more deterministic) to just ‘b’.

Example 2

Imagine we specify a Mammal.

We might later refine this to specify a Dog!

This removes some irrelevant possibilities (e.g.
“two-legged”) but all behaviours of a dog are still possible
behaviours of a mammal.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

3 From Specification to Implementation
3.2 Refinement

Formal Aspects of Refinement
In refining ϕS to ϕR, it is typical (and expected) that

` ϕR ⇒ ϕS

So, implementations satisfying ϕR will also still satisfy ϕS.

But there may well be some implementations allowed by ϕS
that are now disallowed by ϕR.

Two things are important here:
1 whatever logical properties we established of ϕS can,

because we know that ϕR ⇒ ϕS, also be established of
ϕR; and

2 ϕR is more detailed, more deterministic, or at least
closer to a possible implementation on the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

3 From Specification to Implementation
3.2 Refinement

Formal Aspects of Refinement
In refining ϕS to ϕR, it is typical (and expected) that

` ϕR ⇒ ϕS

So, implementations satisfying ϕR will also still satisfy ϕS.

But there may well be some implementations allowed by ϕS
that are now disallowed by ϕR.

Two things are important here:
1 whatever logical properties we established of ϕS can,

because we know that ϕR ⇒ ϕS, also be established of
ϕR; and

2 ϕR is more detailed, more deterministic, or at least
closer to a possible implementation on the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

3 From Specification to Implementation
3.2 Refinement

Formal Aspects of Refinement
In refining ϕS to ϕR, it is typical (and expected) that

` ϕR ⇒ ϕS

So, implementations satisfying ϕR will also still satisfy ϕS.

But there may well be some implementations allowed by ϕS
that are now disallowed by ϕR.

Two things are important here:
1 whatever logical properties we established of ϕS can,

because we know that ϕR ⇒ ϕS, also be established of
ϕR; and

2 ϕR is more detailed, more deterministic, or at least
closer to a possible implementation on the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

3 From Specification to Implementation
3.2 Refinement

Formal Aspects of Refinement
In refining ϕS to ϕR, it is typical (and expected) that

` ϕR ⇒ ϕS

So, implementations satisfying ϕR will also still satisfy ϕS.

But there may well be some implementations allowed by ϕS
that are now disallowed by ϕR.

Two things are important here:
1 whatever logical properties we established of ϕS can,

because we know that ϕR ⇒ ϕS, also be established of
ϕR; and

2 ϕR is more detailed, more deterministic, or at least
closer to a possible implementation on the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

3 From Specification to Implementation
3.2 Refinement

Formal Aspects of Refinement
In refining ϕS to ϕR, it is typical (and expected) that

` ϕR ⇒ ϕS

So, implementations satisfying ϕR will also still satisfy ϕS.

But there may well be some implementations allowed by ϕS
that are now disallowed by ϕR.

Two things are important here:
1 whatever logical properties we established of ϕS can,

because we know that ϕR ⇒ ϕS, also be established of
ϕR; and

2 ϕR is more detailed, more deterministic, or at least
closer to a possible implementation on the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

3 From Specification to Implementation
3.2 Refinement

Example

Our original specification, ϕM , is for a Mammal.

We develop a refinement, ϕD, specifying a Dog.

All dogs are mammals, so we know ϕD ⇒ ϕM .

Now we refine still further to give, ϕP , specifying a Poodle.

Since all poodles are dogs, then ϕP ⇒ ϕD.

We might have proved a property of mammals, for example
having “warm-blood” but do not have to prove this again
for poodles, since we know

ϕP ⇒ ϕD ϕD ⇒ ϕM ϕM ⇒ “warm-blood”

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

3 From Specification to Implementation
3.2 Refinement

Example

Our original specification, ϕM , is for a Mammal.

We develop a refinement, ϕD, specifying a Dog.

All dogs are mammals, so we know ϕD ⇒ ϕM .

Now we refine still further to give, ϕP , specifying a Poodle.

Since all poodles are dogs, then ϕP ⇒ ϕD.

We might have proved a property of mammals, for example
having “warm-blood” but do not have to prove this again
for poodles, since we know

ϕP ⇒ ϕD ϕD ⇒ ϕM ϕM ⇒ “warm-blood”

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

3 From Specification to Implementation
3.2 Refinement

Refinement Process
ϕS
⇑
ϕR
⇑
ϕR1

⇑
ϕR2

...
ϕRN

Thus, we can develop a series of refine-
ments, ϕR1, ϕR2, ϕR3, . . ., successively
moving us towards an implementation in
a formally defined way [Mili et al., 1986].

Any of these refinements satisfies the logi-
cal properties of the original specification.

There still remains the problem of getting from a logical
specification, say ϕRi

, to an actual agent implementation.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 127

3 From Specification to Implementation
3.2 Refinement

Refinement Process
ϕS
⇑
ϕR
⇑
ϕR1

⇑
ϕR2

...
ϕRN

Thus, we can develop a series of refine-
ments, ϕR1, ϕR2, ϕR3, . . ., successively
moving us towards an implementation in
a formally defined way [Mili et al., 1986].

Any of these refinements satisfies the logi-
cal properties of the original specification.

There still remains the problem of getting from a logical
specification, say ϕRi

, to an actual agent implementation.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 127

3 From Specification to Implementation
3.3 Synthesis

3.3 Synthesis

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 128

3 From Specification to Implementation
3.3 Synthesis

Program Synthesis

Generally, within formal approaches to program
development, we are given a program/system, S, and a
logical requirement, R, and asked

does S always satisfy R?

With synthesis we are just given R and asked

can we construct an S that always satisfies R?

Or, even more appealing:

can we automatically construct an S that always
satisfies R?

Sounds very appealing but can be very complex.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 129

3 From Specification to Implementation
3.3 Synthesis

Program Synthesis

Generally, within formal approaches to program
development, we are given a program/system, S, and a
logical requirement, R, and asked

does S always satisfy R?

With synthesis we are just given R and asked

can we construct an S that always satisfies R?

Or, even more appealing:

can we automatically construct an S that always
satisfies R?

Sounds very appealing but can be very complex.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 129

3 From Specification to Implementation
3.3 Synthesis

Program Synthesis

Generally, within formal approaches to program
development, we are given a program/system, S, and a
logical requirement, R, and asked

does S always satisfy R?

With synthesis we are just given R and asked

can we construct an S that always satisfies R?

Or, even more appealing:

can we automatically construct an S that always
satisfies R?

Sounds very appealing but can be very complex.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 129

3 From Specification to Implementation
3.3 Synthesis

Program Synthesis

Generally, within formal approaches to program
development, we are given a program/system, S, and a
logical requirement, R, and asked

does S always satisfy R?

With synthesis we are just given R and asked

can we construct an S that always satisfies R?

Or, even more appealing:

can we automatically construct an S that always
satisfies R?

Sounds very appealing but can be very complex.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 129

3 From Specification to Implementation
3.3 Synthesis

Agent Synthesis?
Ideally, we would like to automatically synthesise an agent
program directly from an agent specification.

This sounds ideal, especially if we can guarantee that the
agent will definitely implement its specification.

This is, of course, a very appealing direction in traditional
formal methods [Manna and Waldinger, 1971].

A typical approach is to synthesise a finite state automaton
from a logical (usually temporal)
specification [Pnueli and Rosner, 1989b].

In some cases this can be automatic and effective.

However: the complexity of this is often very large, e.g.
2-EXPTIME.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 130

3 From Specification to Implementation
3.4 Specifications as Programs

3.4 Specifications as
Programs

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 131

3 From Specification to Implementation
3.4 Specifications as Programs

Executions
A formal specification essentially characterises a set of
models of the entity being specified.

In the case of agents, a logical agent specification describes
a set of agent executions that satisfy the specification.

So, if we have some process for extracting one (or more) of
these models/executions from the specification then this
effectively gives us a way of implementing the formal
specification.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 132

3 From Specification to Implementation
3.4 Specifications as Programs

Recap: Logic Programming
Logic Programming provides a mechanism for trying to
build a model (execution) of a set of Horn Clauses.

Indeed, we could use many other methods for
model-building from a set of Horn Clauses [Kowalski, 1979].

If we wish to do something similar for agent specifications,
then we must invoke suitable model-building procedures
for the logics underlying these specifications.

Fortunately, the basis for many agent specifications is linear
temporal logic and the models of this logic are linear
sequences of states which corresponds closely to program
executions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 133

3 From Specification to Implementation
3.4 Specifications as Programs

Recap: Logic Programming
Logic Programming provides a mechanism for trying to
build a model (execution) of a set of Horn Clauses.

Indeed, we could use many other methods for
model-building from a set of Horn Clauses [Kowalski, 1979].

If we wish to do something similar for agent specifications,
then we must invoke suitable model-building procedures
for the logics underlying these specifications.

Fortunately, the basis for many agent specifications is linear
temporal logic and the models of this logic are linear
sequences of states which corresponds closely to program
executions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 133

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications

2 then extending this to agent specifications
But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case.

Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,

→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Executable Agent Specifications
1 begin by building models from temporal specifications
2 then extending this to agent specifications

But how?

An obvious first step is to extend the resolution approach
that is central to Logic Programming to the temporal logic
case. Unfortunately
→ this is quite complex and,
→ sometimes gives counter-intuitive results.

Notable languages:
Templog [Abadi and Manna, 1989]; and
Chronolog [Orgun and Wadge, 1992]

Both execute a subset of temporal Horn clauses using
TSLD-resolution, an extension of classical SLD-resolution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 134

3 From Specification to Implementation
3.4 Specifications as Programs

Basic METATEM Execution
METATEM [Fisher and Hepple, 2009]

executes temporal specifications, and
builds the underlying temporal models in the intuitive
order, i.e. from the beginning onwards.

METATEM execution uses a lightweight forward chaining
procedure which builds an execution sequence that is a
model for the temporal specification.

“Imperative Future” approach [Barringer et al., 1996]
→ built from the beginning, i.e.
→ the model is constructed step by step, starting from the

initial state.

In the basic case this is complete in that the temporal
specification for an agent can be executed if, and only if, the
specification is satisfiable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 135

3 From Specification to Implementation
3.4 Specifications as Programs

Basic METATEM Execution
METATEM [Fisher and Hepple, 2009]

executes temporal specifications, and
builds the underlying temporal models in the intuitive
order, i.e. from the beginning onwards.

METATEM execution uses a lightweight forward chaining
procedure which builds an execution sequence that is a
model for the temporal specification.

“Imperative Future” approach [Barringer et al., 1996]
→ built from the beginning, i.e.
→ the model is constructed step by step, starting from the

initial state.

In the basic case this is complete in that the temporal
specification for an agent can be executed if, and only if, the
specification is satisfiable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 135

3 From Specification to Implementation
3.4 Specifications as Programs

Basic METATEM Execution
METATEM [Fisher and Hepple, 2009]

executes temporal specifications, and
builds the underlying temporal models in the intuitive
order, i.e. from the beginning onwards.

METATEM execution uses a lightweight forward chaining
procedure which builds an execution sequence that is a
model for the temporal specification.

“Imperative Future” approach [Barringer et al., 1996]
→ built from the beginning, i.e.
→ the model is constructed step by step, starting from the

initial state.

In the basic case this is complete in that the temporal
specification for an agent can be executed if, and only if, the
specification is satisfiable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 135

3 From Specification to Implementation
3.4 Specifications as Programs

Basic METATEM Execution
METATEM [Fisher and Hepple, 2009]

executes temporal specifications, and
builds the underlying temporal models in the intuitive
order, i.e. from the beginning onwards.

METATEM execution uses a lightweight forward chaining
procedure which builds an execution sequence that is a
model for the temporal specification.

“Imperative Future” approach [Barringer et al., 1996]
→ built from the beginning, i.e.
→ the model is constructed step by step, starting from the

initial state.

In the basic case this is complete in that the temporal
specification for an agent can be executed if, and only if, the
specification is satisfiable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 135

3 From Specification to Implementation
3.4 Specifications as Programs

Concurrent METATEM
A temporal specification on its own is not enough, so the
basic specification is extended with both beliefs and
motivations.

Beliefs provide the information the agent decides upon.

In addition, two varieties of motivations are developed:
the temporal ‘♦’ modality, which provides a very
strong motivation since the semantics of ‘♦g’ require
that g will definitely happen; and
the combination ‘B♦’, where ‘B’ is the belief operator,
which provides a weaker motivation for the agent.

Concurrent MetateM takes a set of such agents, each
executing their own formal specifications asynchronously
and allows them to communicate, cooperate and
self-organize [Fisher, 2011].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 136

3 From Specification to Implementation
3.4 Specifications as Programs

Concurrent METATEM
A temporal specification on its own is not enough, so the
basic specification is extended with both beliefs and
motivations.

Beliefs provide the information the agent decides upon.

In addition, two varieties of motivations are developed:
the temporal ‘♦’ modality, which provides a very
strong motivation since the semantics of ‘♦g’ require
that g will definitely happen; and
the combination ‘B♦’, where ‘B’ is the belief operator,
which provides a weaker motivation for the agent.

Concurrent MetateM takes a set of such agents, each
executing their own formal specifications asynchronously
and allows them to communicate, cooperate and
self-organize [Fisher, 2011].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 136

3 From Specification to Implementation
3.4 Specifications as Programs

Concurrent METATEM
A temporal specification on its own is not enough, so the
basic specification is extended with both beliefs and
motivations.

Beliefs provide the information the agent decides upon.

In addition, two varieties of motivations are developed:
the temporal ‘♦’ modality, which provides a very
strong motivation since the semantics of ‘♦g’ require
that g will definitely happen; and
the combination ‘B♦’, where ‘B’ is the belief operator,
which provides a weaker motivation for the agent.

Concurrent MetateM takes a set of such agents, each
executing their own formal specifications asynchronously
and allows them to communicate, cooperate and
self-organize [Fisher, 2011].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 136

3 From Specification to Implementation
3.4 Specifications as Programs

Concurrent METATEM
A temporal specification on its own is not enough, so the
basic specification is extended with both beliefs and
motivations.

Beliefs provide the information the agent decides upon.

In addition, two varieties of motivations are developed:
the temporal ‘♦’ modality, which provides a very
strong motivation since the semantics of ‘♦g’ require
that g will definitely happen; and
the combination ‘B♦’, where ‘B’ is the belief operator,
which provides a weaker motivation for the agent.

Concurrent MetateM takes a set of such agents, each
executing their own formal specifications asynchronously
and allows them to communicate, cooperate and
self-organize [Fisher, 2011].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 136

4 Formal Verification

4. Formal Verification

4 Formal Verification
What is Formal Verification?
Deductive Verification
Algorithmic Verification
Program verification
Run-time verification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

4 Formal Verification

Program Analysis: From Testing....
Once we decide to analyze a system with respect to a formal
property, there are a number of ways to achieve this.

One, particularly popular, approach is to carry out
testing [Ammann and Offutt, 2008].

→ the system/program is executed under a specific set of
conditions and the execution produced is compared to
an expected outcome.

The skill in testing is to carry this out for enough different
conditions so that the developer can be relatively confident
that the program/system is indeed correct.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 138

4 Formal Verification

Program Analysis: From Testing....
Once we decide to analyze a system with respect to a formal
property, there are a number of ways to achieve this.

One, particularly popular, approach is to carry out
testing [Ammann and Offutt, 2008].

→ the system/program is executed under a specific set of
conditions and the execution produced is compared to
an expected outcome.

The skill in testing is to carry this out for enough different
conditions so that the developer can be relatively confident
that the program/system is indeed correct.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 138

4 Formal Verification

Program Analysis: From Testing....
Once we decide to analyze a system with respect to a formal
property, there are a number of ways to achieve this.

One, particularly popular, approach is to carry out
testing [Ammann and Offutt, 2008].

→ the system/program is executed under a specific set of
conditions and the execution produced is compared to
an expected outcome.

The skill in testing is to carry this out for enough different
conditions so that the developer can be relatively confident
that the program/system is indeed correct.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 138

4 Formal Verification

. . . to Formal Verification

While testing is, of course, very useful it only examines a
subset of all the possible executions.

What if we want to be sure that the logical specification is
met whichever way the program/system executes?

Assessing whether this is the case or not is the core of formal
verification.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 139

4 Formal Verification

. . . to Formal Verification

While testing is, of course, very useful it only examines a
subset of all the possible executions.

What if we want to be sure that the logical specification is
met whichever way the program/system executes?

Assessing whether this is the case or not is the core of formal
verification.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 139

4 Formal Verification
4.1 What is Formal Verification?

4.1 What is Formal
Verification?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 140

4 Formal Verification
4.1 What is Formal Verification?

Definitions: Formal Verification
The Latin origin of ‘verification’ is veritas facere: “making
something true”. A more recent dictionary definition is

Verification: additional proof that something that was
believed (some fact or hypothesis or theory)
is correct

Moving on to “formal verification” we find,

Formal Verification: the act of proving or disproving the
correctness of a system with respect to a
certain formal specification or property

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

4 Formal Verification
4.1 What is Formal Verification?

Definitions: Formal Verification
The Latin origin of ‘verification’ is veritas facere: “making
something true”. A more recent dictionary definition is

Verification: additional proof that something that was
believed (some fact or hypothesis or theory)
is correct

Moving on to “formal verification” we find,

Formal Verification: the act of proving or disproving the
correctness of a system with respect to a
certain formal specification or property

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

4 Formal Verification
4.1 What is Formal Verification?

Varieties of Formal Verification
So, we essentially want to examine all possible executions
of our system/program in order to assess whether they all
satisfy our formal requirements.

finite set of different executions
→ enumerate them all and check their properties

infinite number of possible executions
→ then we must do something more sophisticated

We next overview some alternative formal verification
approaches before moving on to these in an agent context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 142

4 Formal Verification
4.1 What is Formal Verification?

Varieties of Formal Verification
So, we essentially want to examine all possible executions
of our system/program in order to assess whether they all
satisfy our formal requirements.

finite set of different executions
→ enumerate them all and check their properties

infinite number of possible executions
→ then we must do something more sophisticated

We next overview some alternative formal verification
approaches before moving on to these in an agent context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 142

4 Formal Verification
4.1 What is Formal Verification?

Varieties of Formal Verification
So, we essentially want to examine all possible executions
of our system/program in order to assess whether they all
satisfy our formal requirements.

finite set of different executions
→ enumerate them all and check their properties

infinite number of possible executions
→ then we must do something more sophisticated

We next overview some alternative formal verification
approaches before moving on to these in an agent context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 142

4 Formal Verification
4.1 What is Formal Verification?

Varieties of Formal Verification
So, we essentially want to examine all possible executions
of our system/program in order to assess whether they all
satisfy our formal requirements.

finite set of different executions
→ enumerate them all and check their properties

infinite number of possible executions
→ then we must do something more sophisticated

We next overview some alternative formal verification
approaches before moving on to these in an agent context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 142

4 Formal Verification
4.2 Deductive Verification

4.2 Deductive Verification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 143

4 Formal Verification
4.2 Deductive Verification

Deductive Verification
If we have a system with an infinite (or very large) number of
possible executions, then a typical approach is to use some
logical description to capture the behaviour of our system.

This logical formula, say Sys, is likely to have been devised
from the formal semantics of the system/program.

If we then have a formal specification of our requirements,
say Req given in the same logic, then the aim of deductive
verification is to prove

` Sys ⇒ Req

If this is proved then all executions, characterized by Sys,
satisfy the required property, Req .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

4 Formal Verification
4.2 Deductive Verification

Deductive Verification
If we have a system with an infinite (or very large) number of
possible executions, then a typical approach is to use some
logical description to capture the behaviour of our system.

This logical formula, say Sys, is likely to have been devised
from the formal semantics of the system/program.

If we then have a formal specification of our requirements,
say Req given in the same logic, then the aim of deductive
verification is to prove

` Sys ⇒ Req

If this is proved then all executions, characterized by Sys,
satisfy the required property, Req .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

4 Formal Verification
4.2 Deductive Verification

Of course, logical proof can be difficult.

1 If we are lucky, Sys and Req can be described in a quite
simple logic and the formula Sys ⇒ Req can be decided
in a fast and automated way.

→ often essential to invoke human intervention and so
utilize semi-automated theorem-provers such as

Isabelle [Paulson, 1994] and
PVS [Owre et al., 1998].

2 More likely either the proof process cannot be fully
automated or, even if it can, it is likely to be very slow.

→ more sophisticated heuristics and abstractions are
typically used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 145

4 Formal Verification
4.2 Deductive Verification

Of course, logical proof can be difficult.

1 If we are lucky, Sys and Req can be described in a quite
simple logic and the formula Sys ⇒ Req can be decided
in a fast and automated way.
→ often essential to invoke human intervention and so

utilize semi-automated theorem-provers such as
Isabelle [Paulson, 1994] and
PVS [Owre et al., 1998].

2 More likely either the proof process cannot be fully
automated or, even if it can, it is likely to be very slow.

→ more sophisticated heuristics and abstractions are
typically used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 145

4 Formal Verification
4.2 Deductive Verification

Of course, logical proof can be difficult.

1 If we are lucky, Sys and Req can be described in a quite
simple logic and the formula Sys ⇒ Req can be decided
in a fast and automated way.
→ often essential to invoke human intervention and so

utilize semi-automated theorem-provers such as
Isabelle [Paulson, 1994] and
PVS [Owre et al., 1998].

2 More likely either the proof process cannot be fully
automated or, even if it can, it is likely to be very slow.

→ more sophisticated heuristics and abstractions are
typically used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 145

4 Formal Verification
4.2 Deductive Verification

Of course, logical proof can be difficult.

1 If we are lucky, Sys and Req can be described in a quite
simple logic and the formula Sys ⇒ Req can be decided
in a fast and automated way.
→ often essential to invoke human intervention and so

utilize semi-automated theorem-provers such as
Isabelle [Paulson, 1994] and
PVS [Owre et al., 1998].

2 More likely either the proof process cannot be fully
automated or, even if it can, it is likely to be very slow.

→ more sophisticated heuristics and abstractions are
typically used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 145

4 Formal Verification
4.3 Algorithmic Verification

4.3 Algorithmic Verification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 146

4 Formal Verification
4.3 Algorithmic Verification

Model Checking (1)
If we want to establish some property of all executions of a
system, and if there is only a finite number of such
executions, then an obvious approach is to enumerate the
executions and check the property on each in turn.

While this is a gross simplification, it is essentially the basis
of the model checking approach to algorithmic verification
that has been so successful and
influential [Clarke et al., 1986].

Here, a mathematical model,M, of the system in question is
produced such that the model captures all relevant system
executions.

Such a model is typically generated from an operational
semantics for the system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 147

4 Formal Verification
4.3 Algorithmic Verification

Model Checking (2)
The formal requirement, R, is usually given in a form of
temporal logic.

A model checker exhaustively checks that all paths through
M (and, therefore, runs through the system) satisfy R.

All paths satisfy the logical requirement
→M |= R
→ system is reported as being correct with respect to its
specification.

If a path, σ, fails to satisfy the specification
→ σ 6|= R
→ provides an execution that violates the formal
requirement.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 148

4 Formal Verification
4.3 Algorithmic Verification

Model Checking (2)
The formal requirement, R, is usually given in a form of
temporal logic.

A model checker exhaustively checks that all paths through
M (and, therefore, runs through the system) satisfy R.

All paths satisfy the logical requirement
→M |= R
→ system is reported as being correct with respect to its
specification.

If a path, σ, fails to satisfy the specification
→ σ 6|= R
→ provides an execution that violates the formal
requirement.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 148

4 Formal Verification
4.3 Algorithmic Verification

Model Checking (2)
The formal requirement, R, is usually given in a form of
temporal logic.

A model checker exhaustively checks that all paths through
M (and, therefore, runs through the system) satisfy R.

All paths satisfy the logical requirement
→M |= R
→ system is reported as being correct with respect to its
specification.

If a path, σ, fails to satisfy the specification
→ σ 6|= R
→ provides an execution that violates the formal
requirement.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 148

4 Formal Verification
4.3 Algorithmic Verification

Model Checking (2)
The formal requirement, R, is usually given in a form of
temporal logic.

A model checker exhaustively checks that all paths through
M (and, therefore, runs through the system) satisfy R.

All paths satisfy the logical requirement
→M |= R
→ system is reported as being correct with respect to its
specification.

If a path, σ, fails to satisfy the specification
→ σ 6|= R
→ provides an execution that violates the formal
requirement.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 148

4 Formal Verification
4.3 Algorithmic Verification

Automata-theoretic View of
Model-Checking
The typical way of visualizing such algorithmic verification is
in terms of finite state automata, in particular Büchi
Automata.

A Büchi Automaton is essentially a finite state automaton
with infinite runs.

The basic idea with model-checking is to capture all the
possible executions of the system to be verified as a Büchi
Automaton and generate a separate Büchi Automaton
describing all bad runs, i.e. executions that do not satisfy
the property being verified.

Then we take the synchronous product of these two Büchi
Automata [Sistla et al., 1987, Vardi and Wolper, 1994].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 149

4 Formal Verification
4.3 Algorithmic Verification

Automata-theoretic View of Model-Checking

Model of the System Model of "Bad" paths

X

 Product
Operation

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 150

4 Formal Verification
4.3 Algorithmic Verification

Automata-theoretic View of
Model-Checking

If the product automaton is empty
→ no sequence which is a legal run of the system while at

the same time satisfying the “bad” property.

If the product automaton is non-empty
→ identifies a sequence which is a legal run of the system

while at the same time satisfying our “bad” property.

→ This highlights a failing run of the system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 151

4 Formal Verification
4.3 Algorithmic Verification

Automata-theoretic View of
Model-Checking

If the product automaton is empty
→ no sequence which is a legal run of the system while at

the same time satisfying the “bad” property.

If the product automaton is non-empty
→ identifies a sequence which is a legal run of the system

while at the same time satisfying our “bad” property.

→ This highlights a failing run of the system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 151

4 Formal Verification
4.3 Algorithmic Verification

Automata-theoretic View of
Model-Checking

If the product automaton is empty
→ no sequence which is a legal run of the system while at

the same time satisfying the “bad” property.

If the product automaton is non-empty
→ identifies a sequence which is a legal run of the system

while at the same time satisfying our “bad” property.

→ This highlights a failing run of the system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 151

4 Formal Verification
4.3 Algorithmic Verification

Model Checking

The model-checking approach has been extremely
successful, not only in analyzing hardware systems and
protocols, but increasingly in software
systems [Clarke et al., 1999, Ball and Rajamani, 2001,
Baier and Katoen, 2008].

While the basic idea is quite simple, the success of the
technology is, to a large part, due to the improvements in
implementation and efficiency that have occurred over the
last 25 years.

As well as the above characterization in terms of automata,
on the fly [Gerth et al., 1995], symbolic [McMillan, 1993]
and SAT-based [Prasad et al., 2005] techniques have all
improved the efficacy of model-checkers.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 152

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” Model-Checking
Recall: basic automata-theoretic view of model-checking
involves constructing the product of two Büchi Automata.

In many practical cases, this product turns out to be much
too large to realistically construct.

So, rather than constructing the actual product
automaton, the idea with the “on the fly approach” is
to explore paths through this product automaton
without actually constructing it!

This is achieved by exploring the two automata in
parallel.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” Model-Checking
Recall: basic automata-theoretic view of model-checking
involves constructing the product of two Büchi Automata.

In many practical cases, this product turns out to be much
too large to realistically construct.

So, rather than constructing the actual product
automaton, the idea with the “on the fly approach” is
to explore paths through this product automaton
without actually constructing it!

This is achieved by exploring the two automata in
parallel.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” Model-Checking
Recall: basic automata-theoretic view of model-checking
involves constructing the product of two Büchi Automata.

In many practical cases, this product turns out to be much
too large to realistically construct.

So, rather than constructing the actual product
automaton, the idea with the “on the fly approach” is
to explore paths through this product automaton
without actually constructing it!

This is achieved by exploring the two automata in
parallel.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” Model-Checking
Recall: basic automata-theoretic view of model-checking
involves constructing the product of two Büchi Automata.

In many practical cases, this product turns out to be much
too large to realistically construct.

So, rather than constructing the actual product
automaton, the idea with the “on the fly approach” is
to explore paths through this product automaton
without actually constructing it!

This is achieved by exploring the two automata in
parallel.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” exploration of the product
automaton

Model of the System Model of "Bad" paths Parallel
Exploration

 ||

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 154

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (1)
In the “on the fly” approach, we explore the ‘system’
automaton, ensuring that every transition we take is
mirrored by a simultaneous transition in the “bad”
automaton.

We keep exploring this pair synchronously until either
1 a path has been found which satisfies both
→ we have found our “bad” path

2 exploration of the ‘system’ automaton can go no
further
→ we roll back our execution to any previous choice point

in the ‘system’ automaton and continue exploration

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (1)
In the “on the fly” approach, we explore the ‘system’
automaton, ensuring that every transition we take is
mirrored by a simultaneous transition in the “bad”
automaton.

We keep exploring this pair synchronously until either
1 a path has been found which satisfies both

→ we have found our “bad” path
2 exploration of the ‘system’ automaton can go no

further
→ we roll back our execution to any previous choice point

in the ‘system’ automaton and continue exploration

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (1)
In the “on the fly” approach, we explore the ‘system’
automaton, ensuring that every transition we take is
mirrored by a simultaneous transition in the “bad”
automaton.

We keep exploring this pair synchronously until either
1 a path has been found which satisfies both
→ we have found our “bad” path

2 exploration of the ‘system’ automaton can go no
further
→ we roll back our execution to any previous choice point

in the ‘system’ automaton and continue exploration

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (1)
In the “on the fly” approach, we explore the ‘system’
automaton, ensuring that every transition we take is
mirrored by a simultaneous transition in the “bad”
automaton.

We keep exploring this pair synchronously until either
1 a path has been found which satisfies both
→ we have found our “bad” path

2 exploration of the ‘system’ automaton can go no
further

→ we roll back our execution to any previous choice point
in the ‘system’ automaton and continue exploration

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (1)
In the “on the fly” approach, we explore the ‘system’
automaton, ensuring that every transition we take is
mirrored by a simultaneous transition in the “bad”
automaton.

We keep exploring this pair synchronously until either
1 a path has been found which satisfies both
→ we have found our “bad” path

2 exploration of the ‘system’ automaton can go no
further
→ we roll back our execution to any previous choice point

in the ‘system’ automaton and continue exploration

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (2)
If we have explored all possible paths through the ‘system’
automaton and none of them have yielded a run of the
“bad” automaton, then we can assert that no execution has
the “bad” property.

In order to be able to utilize this “on the fly” approach, the
model checking implementation needs to have

1 a way to synchronously step through two
representations, and

2 a mechanism for backtracking the execution.

The predominant model checker exhibiting this technology
is the Spin model-checker [Holzmann, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (2)
If we have explored all possible paths through the ‘system’
automaton and none of them have yielded a run of the
“bad” automaton, then we can assert that no execution has
the “bad” property.

In order to be able to utilize this “on the fly” approach, the
model checking implementation needs to have

1 a way to synchronously step through two
representations, and

2 a mechanism for backtracking the execution.

The predominant model checker exhibiting this technology
is the Spin model-checker [Holzmann, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (2)
If we have explored all possible paths through the ‘system’
automaton and none of them have yielded a run of the
“bad” automaton, then we can assert that no execution has
the “bad” property.

In order to be able to utilize this “on the fly” approach, the
model checking implementation needs to have

1 a way to synchronously step through two
representations, and

2 a mechanism for backtracking the execution.

The predominant model checker exhibiting this technology
is the Spin model-checker [Holzmann, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (2)
If we have explored all possible paths through the ‘system’
automaton and none of them have yielded a run of the
“bad” automaton, then we can assert that no execution has
the “bad” property.

In order to be able to utilize this “on the fly” approach, the
model checking implementation needs to have

1 a way to synchronously step through two
representations, and

2 a mechanism for backtracking the execution.

The predominant model checker exhibiting this technology
is the Spin model-checker [Holzmann, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

4 Formal Verification
4.3 Algorithmic Verification

“On the Fly” (2)
If we have explored all possible paths through the ‘system’
automaton and none of them have yielded a run of the
“bad” automaton, then we can assert that no execution has
the “bad” property.

In order to be able to utilize this “on the fly” approach, the
model checking implementation needs to have

1 a way to synchronously step through two
representations, and

2 a mechanism for backtracking the execution.

The predominant model checker exhibiting this technology
is the Spin model-checker [Holzmann, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

4 Formal Verification
4.4 Program verification

4.4 Program verification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 157

4 Formal Verification
4.4 Program verification

Checking Programs Directly

Traditionally, in model-checking, a ‘model’ of the executions
of the system is built and then that model is explored and
checked with respect to the property.

However, if the system we are to verify is a program, then
why not use the program itself as the model?

In this approach, often termed “software model-checking”
or “program model-checking”, a logical property is directly
checked against the program
code [Holzmann and Smith, 1999b,
Holzmann and Smith, 1999a, Visser et al., 2003].

This is actually similar to the “on the fly” approach.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

4 Formal Verification
4.4 Program verification

Program Model-Checking
Recall: for the “on the fly” approach, we need

1 a way of synchronously stepping through a program at
the same time as checking a property, and

2 a mechanism for backtracking execution of the
program.

So, as long as we have implementation technology that
allows these two, we can implement program verification.

The program to be checked is run (e.g. through symbolic
execution) and the execution is dynamically assessed
against the requirement.

Once checked, the program is forced to explore an
alternative execution path which is again checked. And so
on.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

4 Formal Verification
4.4 Program verification

Program Model-Checking
Recall: for the “on the fly” approach, we need

1 a way of synchronously stepping through a program at
the same time as checking a property, and

2 a mechanism for backtracking execution of the
program.

So, as long as we have implementation technology that
allows these two, we can implement program verification.

The program to be checked is run (e.g. through symbolic
execution) and the execution is dynamically assessed
against the requirement.

Once checked, the program is forced to explore an
alternative execution path which is again checked. And so
on.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

4 Formal Verification
4.4 Program verification

Program Model-Checking
Recall: for the “on the fly” approach, we need

1 a way of synchronously stepping through a program at
the same time as checking a property, and

2 a mechanism for backtracking execution of the
program.

So, as long as we have implementation technology that
allows these two, we can implement program verification.

The program to be checked is run (e.g. through symbolic
execution) and the execution is dynamically assessed
against the requirement.

Once checked, the program is forced to explore an
alternative execution path which is again checked. And so
on.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

4 Formal Verification
4.4 Program verification

Program Model-Checking
Recall: for the “on the fly” approach, we need

1 a way of synchronously stepping through a program at
the same time as checking a property, and

2 a mechanism for backtracking execution of the
program.

So, as long as we have implementation technology that
allows these two, we can implement program verification.

The program to be checked is run (e.g. through symbolic
execution) and the execution is dynamically assessed
against the requirement.

Once checked, the program is forced to explore an
alternative execution path which is again checked. And so
on.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

4 Formal Verification
4.4 Program verification

Program Model-Checkers
This has led to the development of model checkers for
various high-level languages such as JAVA and C.

JAVA PATHFINDER system implements this approach for
model-checking JAVA programs [Visser et al., 2003].

1 utilizes a modified JAVA virtual machine which can
backtrack, and

2 it uses synchronous listener threads.

We will see later how JAVA PATHFINDER forms the basis for a
model-checking system for JAVA-based rational agent
programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 160

4 Formal Verification
4.4 Program verification

Program Model-Checkers
This has led to the development of model checkers for
various high-level languages such as JAVA and C.

JAVA PATHFINDER system implements this approach for
model-checking JAVA programs [Visser et al., 2003].

1 utilizes a modified JAVA virtual machine which can
backtrack, and

2 it uses synchronous listener threads.

We will see later how JAVA PATHFINDER forms the basis for a
model-checking system for JAVA-based rational agent
programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 160

4 Formal Verification
4.4 Program verification

Program Model-Checkers
This has led to the development of model checkers for
various high-level languages such as JAVA and C.

JAVA PATHFINDER system implements this approach for
model-checking JAVA programs [Visser et al., 2003].

1 utilizes a modified JAVA virtual machine which can
backtrack, and

2 it uses synchronous listener threads.

We will see later how JAVA PATHFINDER forms the basis for a
model-checking system for JAVA-based rational agent
programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 160

4 Formal Verification
4.4 Program verification

Program Model-Checkers
This has led to the development of model checkers for
various high-level languages such as JAVA and C.

JAVA PATHFINDER system implements this approach for
model-checking JAVA programs [Visser et al., 2003].

1 utilizes a modified JAVA virtual machine which can
backtrack, and

2 it uses synchronous listener threads.

We will see later how JAVA PATHFINDER forms the basis for a
model-checking system for JAVA-based rational agent
programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 160

4 Formal Verification
4.4 Program verification

Program Model-Checkers
This has led to the development of model checkers for
various high-level languages such as JAVA and C.

JAVA PATHFINDER system implements this approach for
model-checking JAVA programs [Visser et al., 2003].

1 utilizes a modified JAVA virtual machine which can
backtrack, and

2 it uses synchronous listener threads.

We will see later how JAVA PATHFINDER forms the basis for a
model-checking system for JAVA-based rational agent
programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 160

4 Formal Verification
4.5 Run-time verification

4.5 Run-time verification

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 161

4 Formal Verification
4.5 Run-time verification

Run-time Verification
Once we have the idea that a form of model-checking can
be invoked directly on the program, by forcing it to run
numerous times, then this leads us on to thinking about
run-time verification [Havelund and Rosu, 2001].

The idea here is to use (lightweight) formal verification
technology to check executions as they are being created.

In this way, errors are also spotted at run-time.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 162

4 Formal Verification
4.5 Run-time verification

Recap; “on the fly”

Model of the System Model of "Bad" paths Parallel
Exploration

 ||

Here, all the possible program executions are checking
against a parallel automaton looking for “bad” runs.

→ just take this automaton and just use it to check the
current execution as it is being created.

→ in this way we can monitor the execution and recognize
when a quite complex error condition has occurred.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 163

4 Formal Verification
4.5 Run-time verification

Recap; “on the fly”

Model of the System Model of "Bad" paths Parallel
Exploration

 ||

Here, all the possible program executions are checking
against a parallel automaton looking for “bad” runs.

→ just take this automaton and just use it to check the
current execution as it is being created.

→ in this way we can monitor the execution and recognize
when a quite complex error condition has occurred.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 163

4 Formal Verification
4.5 Run-time verification

Recap; “on the fly”

Model of the System Model of "Bad" paths Parallel
Exploration

 ||

Here, all the possible program executions are checking
against a parallel automaton looking for “bad” runs.

→ just take this automaton and just use it to check the
current execution as it is being created.

→ in this way we can monitor the execution and recognize
when a quite complex error condition has occurred.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 163

4 Formal Verification
4.5 Run-time verification

General View of Run-Time Model-Checking

Execution of the System Model of "Bad" paths Parallel
Monitoring

 ||

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 164

4 Formal Verification
4.5 Run-time verification

Now we turn to approaches that have been specifically
developed for the formal verification of agents and
multi-agent systems.

There are, as yet, few run-time verification tools explicitly
developed for agents and so we will primarily consider

the deductive verification of agents,
the algorithmic verification of agent models, and
the direct algorithmic verification of agent programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

4 Formal Verification
4.5 Run-time verification

Now we turn to approaches that have been specifically
developed for the formal verification of agents and
multi-agent systems.

There are, as yet, few run-time verification tools explicitly
developed for agents and so we will primarily consider

the deductive verification of agents,
the algorithmic verification of agent models, and
the direct algorithmic verification of agent programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

4 Formal Verification
4.5 Run-time verification

Now we turn to approaches that have been specifically
developed for the formal verification of agents and
multi-agent systems.

There are, as yet, few run-time verification tools explicitly
developed for agents and so we will primarily consider

the deductive verification of agents,

the algorithmic verification of agent models, and
the direct algorithmic verification of agent programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

4 Formal Verification
4.5 Run-time verification

Now we turn to approaches that have been specifically
developed for the formal verification of agents and
multi-agent systems.

There are, as yet, few run-time verification tools explicitly
developed for agents and so we will primarily consider

the deductive verification of agents,
the algorithmic verification of agent models, and

the direct algorithmic verification of agent programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

4 Formal Verification
4.5 Run-time verification

Now we turn to approaches that have been specifically
developed for the formal verification of agents and
multi-agent systems.

There are, as yet, few run-time verification tools explicitly
developed for agents and so we will primarily consider

the deductive verification of agents,
the algorithmic verification of agent models, and
the direct algorithmic verification of agent programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

5 Deductive Verification of Agents

5. Deductive Verification of Agents

5 Deductive Verification of Agents
Problems
Examples of Direct Proof
Use of Logic Programming
Example

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 166

5 Deductive Verification of Agents

Deductive Verification
The essence of deductive verification is to provide a logical
description capturing the full behaviour of our agent, say
‘Ag’.

Then, if we wish to verify some property of our agent, such
as the agent will eventually terminate, we describe this
property as another logical formula, Req , and then attempt
to prove

` Ag ⇒ Req

If we succeed with this proof, then Req is true of all possible
behaviours of the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 167

5 Deductive Verification of Agents

Deductive Verification
The essence of deductive verification is to provide a logical
description capturing the full behaviour of our agent, say
‘Ag’.

Then, if we wish to verify some property of our agent, such
as the agent will eventually terminate, we describe this
property as another logical formula, Req , and then attempt
to prove

` Ag ⇒ Req

If we succeed with this proof, then Req is true of all possible
behaviours of the agent.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 167

5 Deductive Verification of Agents
5.1 Problems

5.1 Problems

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 168

5 Deductive Verification of Agents
5.1 Problems

While the deductive approach is very appealing, there are
some difficulties to be overcome when using it:

1 For our particular agent, what logic should ‘Ag’ be
described in, and how do we actually generate ‘Ag’?

2 What logic should Req be described in, and can we be
sure this is sufficient to allow us to say what we want?

3 Given Ag and Req , then will it be possible to prove

` Ag ⇒ Req

And will we be able to automate this proof process?
4 If we fail to prove ` Ag ⇒ Req , then what does that

mean?

Some of these are, of course, quite difficult and
fundamental questions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 169

5 Deductive Verification of Agents
5.1 Problems

While the deductive approach is very appealing, there are
some difficulties to be overcome when using it:

1 For our particular agent, what logic should ‘Ag’ be
described in, and how do we actually generate ‘Ag’?

2 What logic should Req be described in, and can we be
sure this is sufficient to allow us to say what we want?

3 Given Ag and Req , then will it be possible to prove

` Ag ⇒ Req

And will we be able to automate this proof process?
4 If we fail to prove ` Ag ⇒ Req , then what does that

mean?

Some of these are, of course, quite difficult and
fundamental questions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 169

5 Deductive Verification of Agents
5.1 Problems

While the deductive approach is very appealing, there are
some difficulties to be overcome when using it:

1 For our particular agent, what logic should ‘Ag’ be
described in, and how do we actually generate ‘Ag’?

2 What logic should Req be described in, and can we be
sure this is sufficient to allow us to say what we want?

3 Given Ag and Req , then will it be possible to prove

` Ag ⇒ Req

And will we be able to automate this proof process?

4 If we fail to prove ` Ag ⇒ Req , then what does that
mean?

Some of these are, of course, quite difficult and
fundamental questions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 169

5 Deductive Verification of Agents
5.1 Problems

While the deductive approach is very appealing, there are
some difficulties to be overcome when using it:

1 For our particular agent, what logic should ‘Ag’ be
described in, and how do we actually generate ‘Ag’?

2 What logic should Req be described in, and can we be
sure this is sufficient to allow us to say what we want?

3 Given Ag and Req , then will it be possible to prove

` Ag ⇒ Req

And will we be able to automate this proof process?
4 If we fail to prove ` Ag ⇒ Req , then what does that

mean?

Some of these are, of course, quite difficult and
fundamental questions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 169

5 Deductive Verification of Agents
5.1 Problems

While the deductive approach is very appealing, there are
some difficulties to be overcome when using it:

1 For our particular agent, what logic should ‘Ag’ be
described in, and how do we actually generate ‘Ag’?

2 What logic should Req be described in, and can we be
sure this is sufficient to allow us to say what we want?

3 Given Ag and Req , then will it be possible to prove

` Ag ⇒ Req

And will we be able to automate this proof process?
4 If we fail to prove ` Ag ⇒ Req , then what does that

mean?

Some of these are, of course, quite difficult and
fundamental questions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 169

5 Deductive Verification of Agents
5.1 Problems

Describing Agents
For any formal method then we need some variety of formal
semantics which provides a formal (often logical)
representation of all the behaviours of the agent.

If agents are described in terms of enhanced finite-state
machines then this is fairly straightforward.

If, however, we have an agent program then we require a
semantics for the agent programming language.

In the case of deductive verification we consider here we
specifically need a logical semantics for the agent
programming language.

As with traditional formal methods, other varieties of formal
semantics, notably operational semantics, are popular.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 170

5 Deductive Verification of Agents
5.1 Problems

Describing Agents
For any formal method then we need some variety of formal
semantics which provides a formal (often logical)
representation of all the behaviours of the agent.

If agents are described in terms of enhanced finite-state
machines then this is fairly straightforward.

If, however, we have an agent program then we require a
semantics for the agent programming language.

In the case of deductive verification we consider here we
specifically need a logical semantics for the agent
programming language.

As with traditional formal methods, other varieties of formal
semantics, notably operational semantics, are popular.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 170

5 Deductive Verification of Agents
5.1 Problems

Describing Agents
For any formal method then we need some variety of formal
semantics which provides a formal (often logical)
representation of all the behaviours of the agent.

If agents are described in terms of enhanced finite-state
machines then this is fairly straightforward.

If, however, we have an agent program then we require a
semantics for the agent programming language.

In the case of deductive verification we consider here we
specifically need a logical semantics for the agent
programming language.

As with traditional formal methods, other varieties of formal
semantics, notably operational semantics, are popular.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 170

5 Deductive Verification of Agents
5.1 Problems

Describing Agents
For any formal method then we need some variety of formal
semantics which provides a formal (often logical)
representation of all the behaviours of the agent.

If agents are described in terms of enhanced finite-state
machines then this is fairly straightforward.

If, however, we have an agent program then we require a
semantics for the agent programming language.

In the case of deductive verification we consider here we
specifically need a logical semantics for the agent
programming language.

As with traditional formal methods, other varieties of formal
semantics, notably operational semantics, are popular.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 170

5 Deductive Verification of Agents
5.1 Problems

Requirements and Proof
Any decision about what logical basis to be used must
clearly be driven by the requirements of both the logical
semantics

i.e. what logic the semantics is provided in

and the formal requirements

i.e. what logic allows us to state the questions we
wish to ask

Logics combining a temporal/dynamic dimension with at
least a knowledge/belief dimension (and probably a
motivational dimension) are often used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 171

5 Deductive Verification of Agents
5.1 Problems

Requirements and Proof
Any decision about what logical basis to be used must
clearly be driven by the requirements of both the logical
semantics

i.e. what logic the semantics is provided in

and the formal requirements

i.e. what logic allows us to state the questions we
wish to ask

Logics combining a temporal/dynamic dimension with at
least a knowledge/belief dimension (and probably a
motivational dimension) are often used.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 171

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

5.2 Examples of Direct Proof

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 172

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

IMPACT
Systems are specified in IMPACT through agent programs.

→ programs contain clauses with negation, as in logic
programming.

→ the semantics is given by the well-known fixpoint
semantics (least Herbrand model in the case of Horn
clauses or stable semantics in the case of rules with
negation-as-failure).

While the basic language of IMPACT does not allow us to
formalise mental attitudes, or temporal or probabilistic
reasoning all these features have been subsequently
investigated [Dix et al., 2001, Dix et al., 2006], and can be
modeled with annotated logic programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 173

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

IMPACT
Systems are specified in IMPACT through agent programs.

→ programs contain clauses with negation, as in logic
programming.

→ the semantics is given by the well-known fixpoint
semantics (least Herbrand model in the case of Horn
clauses or stable semantics in the case of rules with
negation-as-failure).

While the basic language of IMPACT does not allow us to
formalise mental attitudes, or temporal or probabilistic
reasoning all these features have been subsequently
investigated [Dix et al., 2001, Dix et al., 2006], and can be
modeled with annotated logic programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 173

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

IMPACT
Systems are specified in IMPACT through agent programs.

→ programs contain clauses with negation, as in logic
programming.

→ the semantics is given by the well-known fixpoint
semantics (least Herbrand model in the case of Horn
clauses or stable semantics in the case of rules with
negation-as-failure).

While the basic language of IMPACT does not allow us to
formalise mental attitudes, or temporal or probabilistic
reasoning all these features have been subsequently
investigated [Dix et al., 2001, Dix et al., 2006], and can be
modeled with annotated logic programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 173

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

IMPACT
Systems are specified in IMPACT through agent programs.

→ programs contain clauses with negation, as in logic
programming.

→ the semantics is given by the well-known fixpoint
semantics (least Herbrand model in the case of Horn
clauses or stable semantics in the case of rules with
negation-as-failure).

While the basic language of IMPACT does not allow us to
formalise mental attitudes, or temporal or probabilistic
reasoning all these features have been subsequently
investigated [Dix et al., 2001, Dix et al., 2006], and can be
modeled with annotated logic programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 173

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

Golog and SITCALC

The Cognitive Agent Specification Language (CASL) is, as
GOLOG, based on the situation calculus, but is extended
with knowledge and goal operators [Shapiro et al., 2002].

Alongside this, the authors described CASLve, a verification
environment for CASL that translates a CASL specification
into a problem for the PVS verification system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 174

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

Golog and SITCALC

The Cognitive Agent Specification Language (CASL) is, as
GOLOG, based on the situation calculus, but is extended
with knowledge and goal operators [Shapiro et al., 2002].

Alongside this, the authors described CASLve, a verification
environment for CASL that translates a CASL specification
into a problem for the PVS verification system.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 174

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

2APL, 3APL

In [Alechina et al., 2011] the authors consider a fragment of
3APL and define a series of propositional dynamic logics
that can be used to prove safety and liveness properties of
programs in this fragment under different deliberation
strategies.

done by relating the operational semantics of programs
to models in the appropriate logic.

→ the axiomatisation of fully interleaved strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 175

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

2APL, 3APL

In [Alechina et al., 2011] the authors consider a fragment of
3APL and define a series of propositional dynamic logics
that can be used to prove safety and liveness properties of
programs in this fragment under different deliberation
strategies.

done by relating the operational semantics of programs
to models in the appropriate logic.

→ the axiomatisation of fully interleaved strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 175

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

2APL, 3APL

In [Alechina et al., 2011] the authors consider a fragment of
3APL and define a series of propositional dynamic logics
that can be used to prove safety and liveness properties of
programs in this fragment under different deliberation
strategies.

done by relating the operational semantics of programs
to models in the appropriate logic.

→ the axiomatisation of fully interleaved strategies.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 175

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

METATEM
As described earlier, METATEM is a little unusual, having no
explicit motivational dimension but using combinations of
temporal and belief operators to achieve such ‘goals’.

Can prove some (simple) properties of METATEM
programs using deductive proof methods for temporal
logics of belief [Dixon et al., 2002].

However, this is non-standard and true “BDI-like” agents
usually require a logic with some explicit motivational
dimension, such as intentions or goals.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 176

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

METATEM
As described earlier, METATEM is a little unusual, having no
explicit motivational dimension but using combinations of
temporal and belief operators to achieve such ‘goals’.

Can prove some (simple) properties of METATEM
programs using deductive proof methods for temporal
logics of belief [Dixon et al., 2002].

However, this is non-standard and true “BDI-like” agents
usually require a logic with some explicit motivational
dimension, such as intentions or goals.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 176

5 Deductive Verification of Agents
5.2 Examples of Direct Proof

METATEM
As described earlier, METATEM is a little unusual, having no
explicit motivational dimension but using combinations of
temporal and belief operators to achieve such ‘goals’.

Can prove some (simple) properties of METATEM
programs using deductive proof methods for temporal
logics of belief [Dixon et al., 2002].

However, this is non-standard and true “BDI-like” agents
usually require a logic with some explicit motivational
dimension, such as intentions or goals.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 176

5 Deductive Verification of Agents
5.3 Use of Logic Programming

5.3 Use of Logic
Programming

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 177

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Logic Programming
If our agent language is based on logic programming then
there may be several advantages.

1 it is traditional that declarative as well as operational
and fixed point semantics are provided for logic
programming languages
→ generating a logical formula describing the agent

behaviour is often more straightforward

2 the underlying execution mechanism is essentially
deductive (often some variety of SLD-resolution)
→ we might use the execution system itself to carry out the

deductive verification we are interested in
→ in some cases this can be expressive and efficient.

However, it is often the case that not all the aspects we
might wish for from “BDI-like” languages are present.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Logic Programming
If our agent language is based on logic programming then
there may be several advantages.

1 it is traditional that declarative as well as operational
and fixed point semantics are provided for logic
programming languages
→ generating a logical formula describing the agent

behaviour is often more straightforward

2 the underlying execution mechanism is essentially
deductive (often some variety of SLD-resolution)
→ we might use the execution system itself to carry out the

deductive verification we are interested in
→ in some cases this can be expressive and efficient.

However, it is often the case that not all the aspects we
might wish for from “BDI-like” languages are present.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Logic Programming
If our agent language is based on logic programming then
there may be several advantages.

1 it is traditional that declarative as well as operational
and fixed point semantics are provided for logic
programming languages
→ generating a logical formula describing the agent

behaviour is often more straightforward

2 the underlying execution mechanism is essentially
deductive (often some variety of SLD-resolution)
→ we might use the execution system itself to carry out the

deductive verification we are interested in

→ in some cases this can be expressive and efficient.

However, it is often the case that not all the aspects we
might wish for from “BDI-like” languages are present.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Logic Programming
If our agent language is based on logic programming then
there may be several advantages.

1 it is traditional that declarative as well as operational
and fixed point semantics are provided for logic
programming languages
→ generating a logical formula describing the agent

behaviour is often more straightforward

2 the underlying execution mechanism is essentially
deductive (often some variety of SLD-resolution)
→ we might use the execution system itself to carry out the

deductive verification we are interested in
→ in some cases this can be expressive and efficient.

However, it is often the case that not all the aspects we
might wish for from “BDI-like” languages are present.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Logic Programming
If our agent language is based on logic programming then
there may be several advantages.

1 it is traditional that declarative as well as operational
and fixed point semantics are provided for logic
programming languages
→ generating a logical formula describing the agent

behaviour is often more straightforward

2 the underlying execution mechanism is essentially
deductive (often some variety of SLD-resolution)
→ we might use the execution system itself to carry out the

deductive verification we are interested in
→ in some cases this can be expressive and efficient.

However, it is often the case that not all the aspects we
might wish for from “BDI-like” languages are present.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Abductive Logic Programming

Extend standard logic programs with abducible predicates.

These are predicates whose values can be set in such a way
to explain certain observations.

Given a program and a set of observations, an
abduction process is used to suggest which abducible
predicates explain the observations.

This is particularly useful where agents have only partial
knowledge of their environment and so must work out
what is the most reasonable explanation for the things it
perceives. Importantly, an abductive proof procedure is
used as part of this process [Kakas et al., 1993].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 179

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Abductive Logic Programming

Extend standard logic programs with abducible predicates.

These are predicates whose values can be set in such a way
to explain certain observations.

Given a program and a set of observations, an
abduction process is used to suggest which abducible
predicates explain the observations.

This is particularly useful where agents have only partial
knowledge of their environment and so must work out
what is the most reasonable explanation for the things it
perceives. Importantly, an abductive proof procedure is
used as part of this process [Kakas et al., 1993].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 179

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Abductive Logic Programming

Extend standard logic programs with abducible predicates.

These are predicates whose values can be set in such a way
to explain certain observations.

Given a program and a set of observations, an
abduction process is used to suggest which abducible
predicates explain the observations.

This is particularly useful where agents have only partial
knowledge of their environment and so must work out
what is the most reasonable explanation for the things it
perceives. Importantly, an abductive proof procedure is
used as part of this process [Kakas et al., 1993].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 179

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Abductive Logic Programming

Extend standard logic programs with abducible predicates.

These are predicates whose values can be set in such a way
to explain certain observations.

Given a program and a set of observations, an
abduction process is used to suggest which abducible
predicates explain the observations.

This is particularly useful where agents have only partial
knowledge of their environment and so must work out
what is the most reasonable explanation for the things it
perceives. Importantly, an abductive proof procedure is
used as part of this process [Kakas et al., 1993].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 179

5 Deductive Verification of Agents
5.3 Use of Logic Programming

KGP and SCIFF
The KGP agent approach [Sadri and Toni, 2006] is based on
logic programming but extended with specific agent
aspects: Knowledge; Goals; and Plans.

Abductive logic programming is used via the SCIFF
procedure for interactive verification.

SCIFF was originally developed to verify the compliance
of agent to interaction protocols and it uses

1 abducibles to represent hypotheses about agent
behaviour,

2 CLP constraints, and
3 existentially quantified variables in integrity constraints.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

5 Deductive Verification of Agents
5.3 Use of Logic Programming

KGP and SCIFF
The KGP agent approach [Sadri and Toni, 2006] is based on
logic programming but extended with specific agent
aspects: Knowledge; Goals; and Plans.

Abductive logic programming is used via the SCIFF
procedure for interactive verification.

SCIFF was originally developed to verify the compliance
of agent to interaction protocols and it uses

1 abducibles to represent hypotheses about agent
behaviour,

2 CLP constraints, and
3 existentially quantified variables in integrity constraints.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

5 Deductive Verification of Agents
5.3 Use of Logic Programming

KGP and SCIFF
The KGP agent approach [Sadri and Toni, 2006] is based on
logic programming but extended with specific agent
aspects: Knowledge; Goals; and Plans.

Abductive logic programming is used via the SCIFF
procedure for interactive verification.

SCIFF was originally developed to verify the compliance
of agent to interaction protocols and it uses

1 abducibles to represent hypotheses about agent
behaviour,

2 CLP constraints, and
3 existentially quantified variables in integrity constraints.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

5 Deductive Verification of Agents
5.3 Use of Logic Programming

KGP and SCIFF
The KGP agent approach [Sadri and Toni, 2006] is based on
logic programming but extended with specific agent
aspects: Knowledge; Goals; and Plans.

Abductive logic programming is used via the SCIFF
procedure for interactive verification.

SCIFF was originally developed to verify the compliance
of agent to interaction protocols and it uses

1 abducibles to represent hypotheses about agent
behaviour,

2 CLP constraints, and

3 existentially quantified variables in integrity constraints.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

5 Deductive Verification of Agents
5.3 Use of Logic Programming

KGP and SCIFF
The KGP agent approach [Sadri and Toni, 2006] is based on
logic programming but extended with specific agent
aspects: Knowledge; Goals; and Plans.

Abductive logic programming is used via the SCIFF
procedure for interactive verification.

SCIFF was originally developed to verify the compliance
of agent to interaction protocols and it uses

1 abducibles to represent hypotheses about agent
behaviour,

2 CLP constraints, and
3 existentially quantified variables in integrity constraints.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Action logics

In a series of papers, e.g. [Giordano et al., 2007], the
problem of specifying and verifying systems of
communicating agents and interaction protocols
(e.g. verification of a priori conformance to the agreed
protocol) is tackled.

applies to the case where protocols are specified with
finite-state automata or when the policies can be
implemented in DYLOG, a computational logic.

→ The [Giordano et al., 2007] approach is based on a
Dynamic Linear Time Temporal Logic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 181

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Action logics

In a series of papers, e.g. [Giordano et al., 2007], the
problem of specifying and verifying systems of
communicating agents and interaction protocols
(e.g. verification of a priori conformance to the agreed
protocol) is tackled.

applies to the case where protocols are specified with
finite-state automata or when the policies can be
implemented in DYLOG, a computational logic.

→ The [Giordano et al., 2007] approach is based on a
Dynamic Linear Time Temporal Logic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 181

5 Deductive Verification of Agents
5.3 Use of Logic Programming

Action logics

In a series of papers, e.g. [Giordano et al., 2007], the
problem of specifying and verifying systems of
communicating agents and interaction protocols
(e.g. verification of a priori conformance to the agreed
protocol) is tackled.

applies to the case where protocols are specified with
finite-state automata or when the policies can be
implemented in DYLOG, a computational logic.

→ The [Giordano et al., 2007] approach is based on a
Dynamic Linear Time Temporal Logic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 181

5 Deductive Verification of Agents
5.4 Example

5.4 Example

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 182

5 Deductive Verification of Agents
5.4 Example

Recall the example of two robots working together to
manufacture an artifact, introduced elsewhere in this book.

We considered some of the requirements of such a scenario
earlier.

Now, if we wish to apply deductive verification to assess
some of these requirements, we need a logical description
of the system in question.

Typically, this would contain logical representations of all
the steps of the robots, for example

 K
robot1

infrontof (robot1 ,A) ∧
K

robot1
infrontof (robot1 ,B) ∧
do(robot1 , load(A,B))

 ⇒ iinfrontof (robot1 ,AB)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 183

5 Deductive Verification of Agents
5.4 Example

Recall the example of two robots working together to
manufacture an artifact, introduced elsewhere in this book.

We considered some of the requirements of such a scenario
earlier.

Now, if we wish to apply deductive verification to assess
some of these requirements, we need a logical description
of the system in question.

Typically, this would contain logical representations of all
the steps of the robots, for example

 K
robot1

infrontof (robot1 ,A) ∧
K

robot1
infrontof (robot1 ,B) ∧
do(robot1 , load(A,B))

 ⇒ iinfrontof (robot1 ,AB)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 183

5 Deductive Verification of Agents
5.4 Example

Recall the example of two robots working together to
manufacture an artifact, introduced elsewhere in this book.

We considered some of the requirements of such a scenario
earlier.

Now, if we wish to apply deductive verification to assess
some of these requirements, we need a logical description
of the system in question.

Typically, this would contain logical representations of all
the steps of the robots, for example

 K
robot1

infrontof (robot1 ,A) ∧
K

robot1
infrontof (robot1 ,B) ∧
do(robot1 , load(A,B))

 ⇒ iinfrontof (robot1 ,AB)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 183

5 Deductive Verification of Agents
5.4 Example

Deduction
Once we have a suitable specification of the system (say
Sys), possibly comprising formulae such as the above, then
we can verify this with respect to some of the formal
requirements (say Req) in the way described earlier, i.e

` Sys ⇒ Req

Of course, we require suitable, preferably automated, proof
systems for the relevant logics.

For example, the above will need at least proof in temporal
logics of knowledge [Fagin et al., 1995].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 184

5 Deductive Verification of Agents
5.4 Example

Deduction
Once we have a suitable specification of the system (say
Sys), possibly comprising formulae such as the above, then
we can verify this with respect to some of the formal
requirements (say Req) in the way described earlier, i.e

` Sys ⇒ Req

Of course, we require suitable, preferably automated, proof
systems for the relevant logics.

For example, the above will need at least proof in temporal
logics of knowledge [Fagin et al., 1995].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 184

5 Deductive Verification of Agents
5.4 Example

Deduction
Once we have a suitable specification of the system (say
Sys), possibly comprising formulae such as the above, then
we can verify this with respect to some of the formal
requirements (say Req) in the way described earlier, i.e

` Sys ⇒ Req

Of course, we require suitable, preferably automated, proof
systems for the relevant logics.

For example, the above will need at least proof in temporal
logics of knowledge [Fagin et al., 1995].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 184

6 Algorithmic Verification of Models

6. Algorithmic Verification of Models

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 185

6 Algorithmic Verification of Models

6 Algorithmic Verification of Models
Representation
MC of CTL
MC of LTL
MC of CTL∗

MC of ATL
MC of MAS with Imperfect Information/Recall
Summary of Complexity Results
Model Checking Agent Language Models

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 186

6 Algorithmic Verification of Models

What is Model Checking

Formal model

Logical (formal)
specification

Let's model ckeck...

M |= hh{1, 2}ii⇤ g>
' = hh{1, 2}ii⇤ g> Computational

Complexity?

?Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push
pu

sh
,w

ai
t

push,wait

w
ait,push

push,w
ait

wait,push
w

ai
t,p

us
h

pos2

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 187

6 Algorithmic Verification of Models

What is Model Checking? (1)
Model checking refers to the problem to determine
whether a given formula ϕ is satisfied in a state q of
modelM .

Local model checking is the decision problem that
determines membership in the set
MC(L, Struc, |=) := {(M, q, ϕ) ∈ Struc×L | M, q |= ϕ} ,
where

L is a logical language,
Struc is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L
and Struc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 188

6 Algorithmic Verification of Models

What is Model Checking? (1)
Model checking refers to the problem to determine
whether a given formula ϕ is satisfied in a state q of
modelM .

Local model checking is the decision problem that
determines membership in the set
MC(L, Struc, |=) := {(M, q, ϕ) ∈ Struc×L | M, q |= ϕ} ,
where

L is a logical language,
Struc is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L
and Struc.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 188

6 Algorithmic Verification of Models

What is Model Checking? (2)

Global model checking: Determine all states in which ϕ
is true.

Here: The complexities of local and global model
checking coincide.

We are interested in the decidability and the
computational complexity of determining whether an
input instance (M, q, ϕ) belongs to MC(. . .).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 189

6 Algorithmic Verification of Models
6.1 Representation

6.1 Representation

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 190

6 Algorithmic Verification of Models
6.1 Representation

How do we measure the size of a given model?
Should we simply consider the number of states?
Should we assume the model is given explicitly and we
just count the number of symbols that are necessary to
represent it?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 191

6 Algorithmic Verification of Models
6.1 Representation

Example 6.1 (Explicit versus implicit
representation)

We here consider the famed primality problem: checking
whether a given natural number n is prime. A very simple
and well-known algorithm uses

√
n-many divisions (starting

with 2, then 3, etc. until
√
n) and thus runs in less than

linear time when the input is represented in unary.
But a symbolic representation of n needs only log(n) bits
and thus the above algorithm runs in exponential time:

√
n

is exponential as a function of log(n).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 192

6 Algorithmic Verification of Models
6.1 Representation

Input size
Size of the model (|M|): number of (states and)
transitions in theM
Size of the formula (|ϕ|): given by its length (i.e., the
number of elements it is composed of, apart from
parentheses).

For example, the formula A j(pos0 ∨ pos1) has length 5.

Be careful . . .
. . . if numbers are involved!

So the indeces have to be represented as well (these could
be arbitrary numbers).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 193

6 Algorithmic Verification of Models
6.1 Representation

Measuring complexity
We distinguish between the following approaches:

Explicit: The input size is given by the number of
transitions in the model and the length of the
formula. Thus we assume the model is given
explicitly.

Implicit: We assume that the transition function is
implicitly encoded in a sufficiently small way.
The input size can then be viewed as a function
of the number of states and the number of
agents (and the length of the formula).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 194

6 Algorithmic Verification of Models
6.1 Representation

Measuring complexity (cont.)

Highly compact: For many systems, some symbolic and
thus very compact representations are possible.
The model can be defined in terms of a compact
high-level representation, plus an unfolding
procedure that defines the precise relationship
between representations and explicit models of
the logic. Of course, unfolding a higher-level
description to an explicit model involves usually
an exponential blowup in its size.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 195

6 Algorithmic Verification of Models
6.1 Representation

Taking only the number of states into account would
give a misleading measure.
Let n be the number of states in a concurrent game
structureM, let k denote the number of agents, and d
the maximal number of available decisions (moves) per
agent per state. Then,

m = O(ndk).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 196

6 Algorithmic Verification of Models
6.1 Representation

If we consider explicit models, the size of the input is
measured as ndk.
If we consider implicit models, then the size of the
input is viewed as a function of n and k.
Therefore many model checking algorithms
(e.g. from [Alur et al., 2002]) are polynomial in ndk but
they run in exponential time if the number of agents is
a parameter of the problem (implicit models).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 197

6 Algorithmic Verification of Models
6.1 Representation

Model Checking LTL/CTL
LetM be a Kripke model and q be a state in the model.

Model checking a LCTL/LCTL∗-formula ϕ inM, q means
to determine whetherM, q |= ϕ, i.e., whether ϕ holds
inM, q.

Consider the path λ = qi1qi2 . . . with
i1.i2i3i4 · · · = 3.14159265 How can we represent such a
path? We need a finite representation.

For LTL, checkingM, q |= ϕ means that we check
whether ϕ holds on all the paths inM which start from
q.

That is, it is equivalent to CTL∗ model checking of a
formula Aϕ inM, q.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 198

6 Algorithmic Verification of Models
6.1 Representation

Model Checking LTL/CTL
LetM be a Kripke model and q be a state in the model.

Model checking a LCTL/LCTL∗-formula ϕ inM, q means
to determine whetherM, q |= ϕ, i.e., whether ϕ holds
inM, q.

Consider the path λ = qi1qi2 . . . with
i1.i2i3i4 · · · = 3.14159265 How can we represent such a
path? We need a finite representation.

For LTL, checkingM, q |= ϕ means that we check
whether ϕ holds on all the paths inM which start from
q.

That is, it is equivalent to CTL∗ model checking of a
formula Aϕ inM, q.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 198

6 Algorithmic Verification of Models
6.1 Representation

Model Checking LTL/CTL
LetM be a Kripke model and q be a state in the model.

Model checking a LCTL/LCTL∗-formula ϕ inM, q means
to determine whetherM, q |= ϕ, i.e., whether ϕ holds
inM, q.

Consider the path λ = qi1qi2 . . . with
i1.i2i3i4 · · · = 3.14159265 How can we represent such a
path? We need a finite representation.

For LTL, checkingM, q |= ϕ means that we check
whether ϕ holds on all the paths inM which start from
q.

That is, it is equivalent to CTL∗ model checking of a
formula Aϕ inM, q.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 198

6 Algorithmic Verification of Models
6.2 MC of CTL

6.2 MC of CTL

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 199

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL

The next algorithm is based on the following fixed-point
characterisations:

E�ϕ ↔ ϕ ∧ E jE�ϕ,
Eϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ E jEϕ1 U ϕ2).

Paths can be constructed step-by-step.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
Let the function pre(Q′) return all states such that there
is a transition leading to a state in Q′ .

Formally: Given a set of states Q′ ⊆ St the preimage of
Q′, pre(Q′), consists of all states q′′ such that there is a
state q′ ∈ St′ with (q′′, q′) ∈ R.

Q1

pre(Q1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 201

6 Algorithmic Verification of Models
6.2 MC of CTL

Example 6.2

Model Check E�p in the following model:

pp p p

pp p p

not in the preimage

not in the preimage

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 202

6 Algorithmic Verification of Models
6.2 MC of CTL

Model checking E�ψ

¬
Q = Q1

Q2 = Q3

Q3

Q2 := Q3 \ pre(Q1)

¬ Q = Q1

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 203

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}

case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E jψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)

case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E jψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)

case ϕ ≡ E jψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E jψ : return pre(mcheck(M, ψ))

case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E jψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL
function mcheck(M, ϕ).
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E jψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Figure 5 : CTL-model checking algorithm

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 204

6 Algorithmic Verification of Models
6.2 MC of CTL

Model Checking CTL

Theorem 6.3
(CTL [Clarke et al., 1986, Schnoebelen, 2003])

Model checking CTL is P -complete, and can be done in time
O(|M| · |ϕ|), where |M| is given by the number of transitions.

Proof
The algorithm determining the states in a model at which a
given formula holds is presented in Figure 5 on Slide 493.
The lower bound (P -hardness) can be for instance proven
by a reduction of the Circuit-Value-Problem
[Schnoebelen, 2003].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 205

6 Algorithmic Verification of Models
6.3 MC of LTL

6.3 MC of LTL

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 206

6 Algorithmic Verification of Models
6.3 MC of LTL

Model Checking LTL and CTL
We are mainly interested in the complexity class (and an
abstract algorithm) of the model checking problem.

Is there a more convenient way to determine the complexity
without working out the algorithm?

Automata-theory to build algorithms.
Unified approach.
Automata are well studied.
Simplifies complexity analysis.
Usually, one is only interested in a complexity class. It is
very time-demanding to come up with a good
algorithm.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 207

6 Algorithmic Verification of Models
6.3 MC of LTL

Model Checking LTL and CTL
We are mainly interested in the complexity class (and an
abstract algorithm) of the model checking problem.

Is there a more convenient way to determine the complexity
without working out the algorithm?

Automata-theory to build algorithms.
Unified approach.
Automata are well studied.
Simplifies complexity analysis.
Usually, one is only interested in a complexity class. It is
very time-demanding to come up with a good
algorithm.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 207

6 Algorithmic Verification of Models
6.3 MC of LTL

Automata and Model Checking
How can we use automata for the model checking problem?

The basic idea is the following:
1 We build an automaton AM,q0 accepting the paths of

modelM, q0.

2 We build an automaton Aϕ accepting all paths
satisfying ϕ.

3 Then, we have:
M |= ϕ iff

L(AM,q0) ⊆ L(Aϕ).

Remark 6.4
Büchi automata are finite automata which accept infinite
words (cf. pages 705).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 208

6 Algorithmic Verification of Models
6.3 MC of LTL

Automata and Model Checking
How can we use automata for the model checking problem?

The basic idea is the following:
1 We build an automaton AM,q0 accepting the paths of

modelM, q0.

2 We build an automaton Aϕ accepting all paths
satisfying ϕ.

3 Then, we have:
M |= ϕ iff L(AM,q0) ⊆ L(Aϕ).

Remark 6.4
Büchi automata are finite automata which accept infinite
words (cf. pages 705).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 208

6 Algorithmic Verification of Models
6.3 MC of LTL

Automata and Model Checking
How can we use automata for the model checking problem?

The basic idea is the following:
1 We build an automaton AM,q0 accepting the paths of

modelM, q0.

2 We build an automaton Aϕ accepting all paths
satisfying ϕ.

3 Then, we have:
M |= ϕ iff L(AM,q0) ⊆ L(Aϕ).

Remark 6.4
Büchi automata are finite automata which accept infinite
words (cf. pages 705).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 208

6 Algorithmic Verification of Models
6.3 MC of LTL

Büchi Automata and Kripke Models
We can relate a Kripke modelM = (St,R, π) and a state
q0 ∈ St to a Büchi automaton AM,q0 = (Σ, St, q0,∆, St)

Σ = P(Prop): Each input symbol is a set of propositions,
q′ ∈ ∆(q, w) iff ((q, q′) ∈ R and w = π(q)),
all states being accepting states (i.e. each infinite
run of the automaton is accepting).

q0 q1

pr, s

{r, s}

{r, s} {p}

q1q0

Note: The automaton accepts words over 2Prop but paths are
sequences of states! What now?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 209

6 Algorithmic Verification of Models
6.3 MC of LTL

Büchi Automata and Kripke Models
We can relate a Kripke modelM = (St,R, π) and a state
q0 ∈ St to a Büchi automaton AM,q0 = (Σ, St, q0,∆, St)

Σ = P(Prop): Each input symbol is a set of propositions,
q′ ∈ ∆(q, w) iff ((q, q′) ∈ R and w = π(q)),
all states being accepting states (i.e. each infinite
run of the automaton is accepting).

q0 q1

pr, s

{r, s}

{r, s} {p}

q1q0

Note: The automaton accepts words over 2Prop but paths are
sequences of states! What now?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 209

6 Algorithmic Verification of Models
6.3 MC of LTL

Büchi Automata and Kripke Models
We can relate a Kripke modelM = (St,R, π) and a state
q0 ∈ St to a Büchi automaton AM,q0 = (Σ, St, q0,∆, St)

Σ = P(Prop): Each input symbol is a set of propositions,
q′ ∈ ∆(q, w) iff ((q, q′) ∈ R and w = π(q)),
all states being accepting states (i.e. each infinite
run of the automaton is accepting).

q0 q1

pr, s

{r, s}

{r, s} {p}

q1q0

Note: The automaton accepts words over 2Prop but paths are
sequences of states! What now?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 209

6 Algorithmic Verification of Models
6.3 MC of LTL

Büchi Automata and Kripke Models
We can relate a Kripke modelM = (St,R, π) and a state
q0 ∈ St to a Büchi automaton AM,q0 = (Σ, St, q0,∆, St)

Σ = P(Prop): Each input symbol is a set of propositions,
q′ ∈ ∆(q, w) iff ((q, q′) ∈ R and w = π(q)),
all states being accepting states (i.e. each infinite
run of the automaton is accepting).

q0 q1

pr, s

{r, s}

{r, s} {p}

q1q0

Note: The automaton accepts words over 2Prop but paths are
sequences of states! What now?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 209

6 Algorithmic Verification of Models
6.3 MC of LTL

LTL Semantics Revisited
The truth of λ, π |= ϕ does only depend on the propositions
true at states.

Clearly, for path, λ, λ′ we have the following:

If for all i ∈ N0

π(λ[i]) = π(λ′[i]) then

λ, π |= ϕ iff λ′, π |= ϕ

.

Hence, we can also use the infinite word

λπ := π(λ[0])π(λ[1])π(λ[2]) · · · ∈ 2Prop
ω

to give truth to LTL-formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 210

6 Algorithmic Verification of Models
6.3 MC of LTL

LTL Semantics Revisited
The truth of λ, π |= ϕ does only depend on the propositions
true at states. Clearly, for path, λ, λ′ we have the following:

If for all i ∈ N0

π(λ[i]) = π(λ′[i]) then

λ, π |= ϕ iff λ′, π |= ϕ

.

Hence, we can also use the infinite word

λπ := π(λ[0])π(λ[1])π(λ[2]) · · · ∈ 2Prop
ω

to give truth to LTL-formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 210

6 Algorithmic Verification of Models
6.3 MC of LTL

LTL Semantics Revisited
The truth of λ, π |= ϕ does only depend on the propositions
true at states. Clearly, for path, λ, λ′ we have the following:

If for all i ∈ N0

π(λ[i]) = π(λ′[i]) then λ, π |= ϕ iff λ′, π |= ϕ.

Hence, we can also use the infinite word

λπ := π(λ[0])π(λ[1])π(λ[2]) · · · ∈ 2Prop
ω

to give truth to LTL-formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 210

6 Algorithmic Verification of Models
6.3 MC of LTL

LTL Semantics Revisited
The truth of λ, π |= ϕ does only depend on the propositions
true at states. Clearly, for path, λ, λ′ we have the following:

If for all i ∈ N0

π(λ[i]) = π(λ′[i]) then λ, π |= ϕ iff λ′, π |= ϕ.

Hence, we can also use the infinite word

λπ := π(λ[0])π(λ[1])π(λ[2]) · · · ∈ 2Prop
ω

to give truth to LTL-formulae.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 210

6 Algorithmic Verification of Models
6.3 MC of LTL

Alternative LTL Semantics
The original clauses had the following form:

λ, π |=LTL p iff λ[0] ∈ π(p);
λ, π |=LTL ¬ϕ iff λ, π 6|=LTL ϕ;
λ, π |=LTL ϕ ∧ ψ iff λ, π |=LTL ϕ and λ, π |=LTL ψ.

What happens if we use λπ instead of λ, π?

We simply replace “λ, π” by “λπ” everywhere and modify
the clause for propositions as follows:

λπ |=LTL p iff p ∈ λπ[0].

We use the same notations for λπ as for paths any may also
omit superscript π if clear from context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 211

6 Algorithmic Verification of Models
6.3 MC of LTL

Alternative LTL Semantics
The original clauses had the following form:

λ, π |=LTL p iff λ[0] ∈ π(p);
λ, π |=LTL ¬ϕ iff λ, π 6|=LTL ϕ;
λ, π |=LTL ϕ ∧ ψ iff λ, π |=LTL ϕ and λ, π |=LTL ψ.

What happens if we use λπ instead of λ, π?

We simply replace “λ, π” by “λπ” everywhere and modify
the clause for propositions as follows:

λπ |=LTL p iff p ∈ λπ[0].

We use the same notations for λπ as for paths any may also
omit superscript π if clear from context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 211

6 Algorithmic Verification of Models
6.3 MC of LTL

Alternative LTL Semantics
The original clauses had the following form:

λ, π |=LTL p iff λ[0] ∈ π(p);
λ, π |=LTL ¬ϕ iff λ, π 6|=LTL ϕ;
λ, π |=LTL ϕ ∧ ψ iff λ, π |=LTL ϕ and λ, π |=LTL ψ.

What happens if we use λπ instead of λ, π?

We simply replace “λ, π” by “λπ” everywhere and modify
the clause for propositions as follows:

λπ |=LTL p iff p ∈ λπ[0].

We use the same notations for λπ as for paths any may also
omit superscript π if clear from context.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 211

6 Algorithmic Verification of Models
6.3 MC of LTL

We can state the relation between ΛM,M, q and AM,q

precisely.

Proposition 6.5

LetM = (St,R, π) and q0 ∈ St. The automaton AM,q0

accepts the language

{λπ | λ ∈ ΛM(q0)}.

Proof.
Exercise!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 212

6 Algorithmic Verification of Models
6.3 MC of LTL

In the following we define the automaton Aϕ accepting
exactly those infinite words w over 2Prop such that w |= ϕ.
Then, we have:

M, q |= ϕ iff L(AM,q) ⊆ L(Aϕ) iff L(AM,q) ∩ L(Aϕ) = ∅.

How can we avoid the complementation of the Büchi
automaton (this operation is expensive)? We have:

L(AM,q) ∩ L(Aϕ) = ∅ iff L(AM,q) ∩ L(A¬ϕ) = ∅.

So: model checking is reduced to emptiness checking Büchi
automata.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 213

6 Algorithmic Verification of Models
6.3 MC of LTL

In the following we define the automaton Aϕ accepting
exactly those infinite words w over 2Prop such that w |= ϕ.
Then, we have:

M, q |= ϕ iff L(AM,q) ⊆ L(Aϕ) iff L(AM,q) ∩ L(Aϕ) = ∅.

How can we avoid the complementation of the Büchi
automaton (this operation is expensive)? We have:

L(AM,q) ∩ L(Aϕ) = ∅ iff L(AM,q) ∩ L(A¬ϕ) = ∅.

So: model checking is reduced to emptiness checking Büchi
automata.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 213

6 Algorithmic Verification of Models
6.3 MC of LTL

The Automaton Aϕ

Example 6.6 (Automaton for �♦green)

Construct a Büchi automaton which accepts all path
satisfying �♦green over Prop = {green}. Thus, the autmaton
can read ∅ or {green}.

{green}

{green}

q0 q1

∅

∅

The automaton accepts e.g.
∅∅∅({green})ω =̂ q0q0q0(q1)

ω

(∅{green})ω =̂ (q0q1)
ω

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 214

6 Algorithmic Verification of Models
6.3 MC of LTL

The Automaton Aϕ

Example 6.6 (Automaton for �♦green)

Construct a Büchi automaton which accepts all path
satisfying �♦green over Prop = {green}. Thus, the autmaton
can read ∅ or {green}.

{green}

{green}

q0 q1

∅

∅

The automaton accepts e.g.
∅∅∅({green})ω =̂ q0q0q0(q1)

ω

(∅{green})ω =̂ (q0q1)
ω

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 214

6 Algorithmic Verification of Models
6.3 MC of LTL

The Automaton Aϕ

Example 6.6 (Automaton for �♦green)

Construct a Büchi automaton which accepts all path
satisfying �♦green over Prop = {green}. Thus, the autmaton
can read ∅ or {green}.

{green}

{green}

q0 q1

∅

∅

The automaton accepts e.g.
∅∅∅({green})ω =̂ q0q0q0(q1)

ω

(∅{green})ω =̂ (q0q1)
ω

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 214

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.7 (Automaton for ♦�green)

Construct a Büchi automaton which accepts all path
satisfying ♦�green over Prop = {green}.

{green}

{green}

q0 q1 q2

∅

∅

∅ {green}{green}

Note, that this automaton is non-deterministic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 215

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.7 (Automaton for ♦�green)

Construct a Büchi automaton which accepts all path
satisfying ♦�green over Prop = {green}.

{green}

{green}

q0 q1 q2

∅

∅

∅ {green}{green}

Note, that this automaton is non-deterministic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 215

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.7 (Automaton for ♦�green)

Construct a Büchi automaton which accepts all path
satisfying ♦�green over Prop = {green}.

{green}

{green}

q0 q1 q2

∅

∅

∅ {green}{green}

Note, that this automaton is non-deterministic.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 215

6 Algorithmic Verification of Models
6.3 MC of LTL

In the following describe how the automaton Aϕ can be
constructed systematically.

Theorem 6.8 ([Sistla and Clarke, 1985,
Lichtenstein and Pnueli, 1985, Vardi and Wolper, 1986])
For a given LLTL-formula ϕ a Büchi Automaton
Aϕ = (S,Σ,∆, S0, F) accepting exactly the words satisfying ϕ
can be constructed where Σ = P(Prop) and |S| ≤ 2(O(|ϕ|)).

In the following we introduce additional notation and
construct the automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 216

6 Algorithmic Verification of Models
6.3 MC of LTL

How does the automaton look like?
States will consist of subformulae of ϕ (or their
negations).
A run ρ = S1S2 . . . of the automaton is an infinite
sequence of such sets ofsubformulae.

Given a word λπ = w1w2 . . . with λπ |= ϕ we would like to
enrich each (propositional) wi with subformulae to Si such
that

λπ[i,∞] |= ψ iff ψ ∈ Si
for all subformulae ψ of ϕ.

Intuitively, each Si encodes the formulae which should be
true at this moment.

The basic idea is that a run of the automaton simulates the
LTL semantics.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 217

6 Algorithmic Verification of Models
6.3 MC of LTL

How does the automaton look like?
States will consist of subformulae of ϕ (or their
negations).
A run ρ = S1S2 . . . of the automaton is an infinite
sequence of such sets ofsubformulae.

Given a word λπ = w1w2 . . . with λπ |= ϕ we would like to
enrich each (propositional) wi with subformulae to Si such
that

λπ[i,∞] |= ψ iff ψ ∈ Si
for all subformulae ψ of ϕ.

Intuitively, each Si encodes the formulae which should be
true at this moment.

The basic idea is that a run of the automaton simulates the
LTL semantics.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 217

6 Algorithmic Verification of Models
6.3 MC of LTL

How does the automaton look like?
States will consist of subformulae of ϕ (or their
negations).
A run ρ = S1S2 . . . of the automaton is an infinite
sequence of such sets ofsubformulae.

Given a word λπ = w1w2 . . . with λπ |= ϕ we would like to
enrich each (propositional) wi with subformulae to Si such
that

λπ[i,∞] |= ψ iff ψ ∈ Si
for all subformulae ψ of ϕ.

Intuitively, each Si encodes the formulae which should be
true at this moment.

The basic idea is that a run of the automaton simulates the
LTL semantics.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 217

6 Algorithmic Verification of Models
6.3 MC of LTL

How does the automaton look like?
States will consist of subformulae of ϕ (or their
negations).
A run ρ = S1S2 . . . of the automaton is an infinite
sequence of such sets ofsubformulae.

Given a word λπ = w1w2 . . . with λπ |= ϕ we would like to
enrich each (propositional) wi with subformulae to Si such
that

λπ[i,∞] |= ψ iff ψ ∈ Si
for all subformulae ψ of ϕ.

Intuitively, each Si encodes the formulae which should be
true at this moment.

The basic idea is that a run of the automaton simulates the
LTL semantics.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 217

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),

2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),

3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),

4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),

5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),

6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that

|cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.9 (Closure cl(ϕ))

The closure cl(ϕ) is defined as follows:
1 ϕ ∈ cl(ϕ),
2 φ ∧ ψ ∈ cl(ϕ) implies φ, ψ ∈ cl(ϕ),
3 ¬ψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
4 ψ ∈ cl(ϕ) and ψ 6= ¬φ implies ¬ψ ∈ cl(ϕ),
5 jψ ∈ cl(ϕ) implies ψ ∈ cl(ϕ),
6 ψ U φ ∈ cl(ϕ) implies ψ, φ ∈ cl(ϕ).

Note, that it holds that |cl(ϕ)| ≤ 2|ϕ|.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 218

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.10 (Closure)

How does the closure for ϕ = rU (s ∨ t) look like?

The closure cl(ϕ) consists of the following formulae:

1 ϕ

2 s ∨ t
3 r

4 s

5 t

and their negations!

What other properties should such sets fulfill? Note, that we
are interested in a correspondence to runs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 219

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.10 (Closure)

How does the closure for ϕ = rU (s ∨ t) look like?
The closure cl(ϕ) consists of the following formulae:

1 ϕ

2 s ∨ t
3 r

4 s

5 t

and their negations!

What other properties should such sets fulfill? Note, that we
are interested in a correspondence to runs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 219

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff

ϕ1 ∈ B and ϕ2 ∈ B,

2 ψ ∈ B implies

¬ψ 6∈ B,

3 > ∈ cl(ϕ) implies

> ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff

ϕ1 ∈ B and ϕ2 ∈ B,

2 ψ ∈ B implies

¬ψ 6∈ B,

3 > ∈ cl(ϕ) implies

> ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies

¬ψ 6∈ B,

3 > ∈ cl(ϕ) implies

> ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies

> ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies > ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies > ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies > ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies

ϕ1 U ϕ2 ∈ B

.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies > ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies ϕ1 U ϕ2 ∈ B.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies

ϕ1 ∈ B

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.11 (Logically consistent)

We call B ⊆ cl(ϕ) propositionally consistent iff for all
ϕ1 ∧ ϕ2, ψ ∈ cl(ϕ):

1 ϕ1 ∧ ϕ2 ∈ B iff ϕ1 ∈ B and ϕ2 ∈ B,
2 ψ ∈ B implies ¬ψ 6∈ B,
3 > ∈ cl(ϕ) implies > ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.12 (Locally consistent)

We call B ⊆ cl(ϕ) locally consistent iff for all ϕ1 U ϕ2 ∈ cl(ϕ):

1 ϕ2 ∈ B implies ϕ1 U ϕ2 ∈ B.
2 ϕ1 U ϕ2 ∈ B and ϕ2 6∈ B implies ϕ1 ∈ B.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 220

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.13 (Maximal consistent)

We call B ⊆ cl(ϕ) maximal iff for all ψ ∈ cl(ϕ)

ψ 6∈ B implies ¬ψ ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.14 (Elementary, EL(ϕ))

We call B ⊆ cl(ϕ) elementary iff B is propositionally and
locally consistent and maximal.
We define EL(ϕ) as the set of all elementary subsets of cl(ϕ).

In the following we construct infinite words over EL(ϕ) that
corresponds to accepting paths.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 221

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.13 (Maximal consistent)

We call B ⊆ cl(ϕ) maximal iff for all ψ ∈ cl(ϕ)

ψ 6∈ B implies ¬ψ ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.14 (Elementary, EL(ϕ))

We call B ⊆ cl(ϕ) elementary iff B is propositionally and
locally consistent and maximal.

We define EL(ϕ) as the set of all elementary subsets of cl(ϕ).

In the following we construct infinite words over EL(ϕ) that
corresponds to accepting paths.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 221

6 Algorithmic Verification of Models
6.3 MC of LTL

Definition 6.13 (Maximal consistent)

We call B ⊆ cl(ϕ) maximal iff for all ψ ∈ cl(ϕ)

ψ 6∈ B implies ¬ψ ∈ B.

We identify ¬¬ϕ with ϕ.

Definition 6.14 (Elementary, EL(ϕ))

We call B ⊆ cl(ϕ) elementary iff B is propositionally and
locally consistent and maximal.
We define EL(ϕ) as the set of all elementary subsets of cl(ϕ).

In the following we construct infinite words over EL(ϕ) that
corresponds to accepting paths.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 221

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅

not maximal

2 {rU s, r, s}

yes

3 {rU s, r}

not maximal

4 {rU s,¬r,¬s}

not locally consistent

5 {rU s,¬r, s}

yes

6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s}

yes

3 {rU s, r}

not maximal

4 {rU s,¬r,¬s}

not locally consistent

5 {rU s,¬r, s}

yes

6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r}

not maximal

4 {rU s,¬r,¬s}

not locally consistent

5 {rU s,¬r, s}

yes

6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s}

not locally consistent

5 {rU s,¬r, s}

yes

6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s}

yes

6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s} yes
6 {rU s, r,¬s}

yes

7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s} yes
6 {rU s, r,¬s} yes
7 {rU s, r,¬r,¬s}

not propositionally consistent

8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s} yes
6 {rU s, r,¬s} yes
7 {rU s, r,¬r,¬s} not propositionally consistent
8 {¬(rU s), r,¬s}

yes

9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s} yes
6 {rU s, r,¬s} yes
7 {rU s, r,¬r,¬s} not propositionally consistent
8 {¬(rU s), r,¬s} yes
9 {¬(rU s),¬r,¬s}

yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

The closure of ϕ = rU s is given by {ϕ,¬ϕ, r, s,¬r,¬s}.
Which of the following sets are elementary?

1 ∅ not maximal
2 {rU s, r, s} yes
3 {rU s, r} not maximal
4 {rU s,¬r,¬s} not locally consistent
5 {rU s,¬r, s} yes
6 {rU s, r,¬s} yes
7 {rU s, r,¬r,¬s} not propositionally consistent
8 {¬(rU s), r,¬s} yes
9 {¬(rU s),¬r,¬s} yes

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 222

6 Algorithmic Verification of Models
6.3 MC of LTL

Example 6.15 (Elementary sets)

The closure of ϕ = rU s is given by

cl(ϕ) = {ϕ,¬ϕ, r, s,¬r,¬s}

The following list contains all elementary sets of ϕ:

1 E1 = {rU s, r, s}
2 E2 = {rU s,¬r, s}
3 E3 = {rU s, r,¬s}
4 E4 = {¬rU s, r,¬s}
5 E5 = {¬rU s,¬r,¬s}

In the following, we construct the Büchi atuomaton Aϕ for
ϕ = rU s.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 223

6 Algorithmic Verification of Models
6.3 MC of LTL

Constructing the Automaton for rU s
r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

Initial states?
{s ∈ S | ϕ ∈ s}

Accepting states?
If ϕ1 U ϕ2 ∈ cl(ϕ)
then
ϕ1 U ϕ2 6∈ s or
ϕ2 ∈ s

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 224

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

Initial states?
{s ∈ S | ϕ ∈ s}
Accepting states?
If ϕ1 U ϕ2 ∈ cl(ϕ)
then
ϕ1 U ϕ2 6∈ s or
ϕ2 ∈ s

 A reads {r}

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 225

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

{r}

{r}

{r}

{r}

{r}
A reads {r}

 A reads {s}

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 226

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

{s}

{s}
{s}

{s}

{s}

A reads {s}

 A reads {r, s}

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 227

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

{r, s}

{r, s} {r, s}

{r, s}

{r, s}

A reads {r, s}

 A reads ∅

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 228

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

∅

∅

∅

∅

∅

A reads ∅

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 229

6 Algorithmic Verification of Models
6.3 MC of LTL

r U s
r, s

r U s
¬r, s

r U s
r,¬s

¬(r U s)
r,¬s

¬(r U s)
¬r,¬s

{r, s}

{r}

{r}

{r}

{r}

{s}

{s}
{s}

{s}

{s}

{r, s} {r, s}

{r, s}

{r, s}

{r}

∅

∅

∅

∅

∅

The complete
automaton

(s, a, t) ∈ ∆ then ∀rU s ∈ cl(ϕ) :
rU s ∈ s iff (s ∈ s or (r ∈ s and rU s ∈ t))

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 230

6 Algorithmic Verification of Models
6.3 MC of LTL

Theorem 6.16 (LTL [Sistla and Clarke, 1985,

Lichtenstein and Pnueli, 1985, Vardi and Wolper, 1986])

Model checking LTL is PSPACE-complete, and can be done
in time 2O(|ϕ|)O(|M|), where |M| is given by the number of
transitions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 231

6 Algorithmic Verification of Models
6.3 MC of LTL

Proof: Upper Bound

Given an LLTL-formula ϕ.
1 Construct Büchi automaton A¬ϕ of size 2O(|ϕ|)

accepting exactly the words satisfying ¬ϕ.

2 Kripke modelM, q can directly be interpreted as a
Büchi automaton AM,q of size O(|M|) accepting all
possible words in the Kripke model starting in q.

3 The model checking problem reduces to the emptiness
check of L(AM,q) ∩ L(A¬ϕ) which can be done in
polynomial time wrt the size of the automaton
(cf.pp. 769). That is, in time O(|M|) · 2O(|ϕ|) by
constructing the product automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 232

6 Algorithmic Verification of Models
6.3 MC of LTL

Proof: Upper Bound

Given an LLTL-formula ϕ.
1 Construct Büchi automaton A¬ϕ of size 2O(|ϕ|)

accepting exactly the words satisfying ¬ϕ.

2 Kripke modelM, q can directly be interpreted as a
Büchi automaton AM,q of size O(|M|) accepting all
possible words in the Kripke model starting in q.

3 The model checking problem reduces to the emptiness
check of L(AM,q) ∩ L(A¬ϕ) which can be done in
polynomial time wrt the size of the automaton
(cf.pp. 769). That is, in time O(|M|) · 2O(|ϕ|) by
constructing the product automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 232

6 Algorithmic Verification of Models
6.3 MC of LTL

Proof: Upper Bound

Given an LLTL-formula ϕ.
1 Construct Büchi automaton A¬ϕ of size 2O(|ϕ|)

accepting exactly the words satisfying ¬ϕ.

2 Kripke modelM, q can directly be interpreted as a
Büchi automaton AM,q of size O(|M|) accepting all
possible words in the Kripke model starting in q.

3 The model checking problem reduces to the emptiness
check of L(AM,q) ∩ L(A¬ϕ) which can be done in
polynomial time wrt the size of the automaton
(cf.pp. 769). That is, in time O(|M|) · 2O(|ϕ|) by
constructing the product automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 232

6 Algorithmic Verification of Models
6.4 MC of CTL∗

6.4 MC of CTL∗

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 233

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Theorem 6.17
(CTL∗ [Clarke et al., 1986, Emerson and Lei, 1987])

Model checking CTL∗ is PSPACE-complete, and can be
done in time 2O(|ϕ|)O(|M|), where |M| is given by the number
of transitions.

Example 6.18 (LTL mcheck for CTL mcheck)

In which states does ϕ = E♦�A�♦¬r hold? How to use LTL
model checking?

q1

q2

q3

q4

r

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 234

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Proof.
Upper bound: Combine CTL and LTL model checking.

Consider LCTL∗-formula ϕ containing Eψ where ψ is a
pure LLTL-formula.

Determine all states which satisfy Eψ (these are all states
q withM, q 6|=LTL ¬ψ), Complexity: PSPACE .
Label them by a fresh proposition, say p, and replace Eψ

in ϕ by p: E j(

p2︷ ︸︸ ︷
r ∧ E♦s︸︷︷︸

p1

) E j(p2 ∧ p1)

Applying this procedure recursively yields a pure
LCTL-formula which can be verified in polynomial time.
Complexity: PPSPACE = PSPACE

Hardness: immediate from Theorem 6.16.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 235

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Proof.
Upper bound: Combine CTL and LTL model checking.

Consider LCTL∗-formula ϕ containing Eψ where ψ is a
pure LLTL-formula.
Determine all states which satisfy Eψ (these are all states
q withM, q 6|=LTL ¬ψ), Complexity: PSPACE .

Label them by a fresh proposition, say p, and replace Eψ

in ϕ by p: E j(

p2︷ ︸︸ ︷
r ∧ E♦s︸︷︷︸

p1

) E j(p2 ∧ p1)

Applying this procedure recursively yields a pure
LCTL-formula which can be verified in polynomial time.
Complexity: PPSPACE = PSPACE

Hardness: immediate from Theorem 6.16.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 235

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Proof.
Upper bound: Combine CTL and LTL model checking.

Consider LCTL∗-formula ϕ containing Eψ where ψ is a
pure LLTL-formula.
Determine all states which satisfy Eψ (these are all states
q withM, q 6|=LTL ¬ψ), Complexity: PSPACE .
Label them by a fresh proposition, say p, and replace Eψ

in ϕ by p: E j(

p2︷ ︸︸ ︷
r ∧ E♦s︸︷︷︸

p1

) E j(p2 ∧ p1)

Applying this procedure recursively yields a pure
LCTL-formula which can be verified in polynomial time.
Complexity: PPSPACE = PSPACE

Hardness: immediate from Theorem 6.16.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 235

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Proof.
Upper bound: Combine CTL and LTL model checking.

Consider LCTL∗-formula ϕ containing Eψ where ψ is a
pure LLTL-formula.
Determine all states which satisfy Eψ (these are all states
q withM, q 6|=LTL ¬ψ), Complexity: PSPACE .
Label them by a fresh proposition, say p, and replace Eψ

in ϕ by p: E j(

p2︷ ︸︸ ︷
r ∧ E♦s︸︷︷︸

p1

) E j(p2 ∧ p1)

Applying this procedure recursively yields a pure
LCTL-formula which can be verified in polynomial time.
Complexity: PPSPACE = PSPACE

Hardness: immediate from Theorem 6.16.
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 235

6 Algorithmic Verification of Models
6.4 MC of CTL∗

Summary

Model checking CTL is P -complete.

Model checking LTL is PSPACE-complete. The
algorithm has been constructed from Büchi automata.

Model checking CTL∗ is also PSPACE-complete. The
algorithm is obtained by the ones for CTL and LTL.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 236

6 Algorithmic Verification of Models
6.5 MC of ATL

6.5 MC of ATL

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 237

6 Algorithmic Verification of Models
6.5 MC of ATL

Example 6.19

Which formulae are true in the model?
1 M, q1 |= 〈〈1〉〉�r
2 M, q1 |= 〈〈1〉〉�s
3 M, q1 |= 〈〈1〉〉 j〈〈1〉〉�r

q1

q2

q3

q4

r

s

q5

r

r

s
(1, 2)

(2, 1)

(1, 1)

(1, 1)

(2, 1)

(1, 1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 238

6 Algorithmic Verification of Models
6.5 MC of ATL

The ATL model checking algorithm employs the well-known
fixpoint characterisations :

〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

Do these characterisations also hold for incomplete
information?

No! A choice of an action at a state q has non-local
consequences: It automatically fixes choices at all states q′

indistinguishable from q for the coalition A.

Again, crucial for model checking is the notion of preimage.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 239

6 Algorithmic Verification of Models
6.5 MC of ATL

The ATL model checking algorithm employs the well-known
fixpoint characterisations :

〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

Do these characterisations also hold for incomplete
information?

No! A choice of an action at a state q has non-local
consequences: It automatically fixes choices at all states q′

indistinguishable from q for the coalition A.

Again, crucial for model checking is the notion of preimage.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 239

6 Algorithmic Verification of Models
6.5 MC of ATL

The ATL model checking algorithm employs the well-known
fixpoint characterisations :

〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

Do these characterisations also hold for incomplete
information?

No! A choice of an action at a state q has non-local
consequences: It automatically fixes choices at all states q′

indistinguishable from q for the coalition A.

Again, crucial for model checking is the notion of preimage.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 239

6 Algorithmic Verification of Models
6.5 MC of ATL

Example 6.20 (Preimage operator for ATL)

1 What is the preimage of {q2, q3}?
2 What is the preimage of {q2}?

Careful: The preimage depends on a group of agents which
try to reach a given region.

1 What is the preimage of {q2, q3} wrt. any group A?
2 What is the preimage of {q2} wrt. {1} and {2}?

q1

q2

q3

q4

r

s

q5

r

r

s
(1, 2)

(2, 1)

(1, 1)

(1, 1)

(2, 1)

(1, 1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 240

6 Algorithmic Verification of Models
6.5 MC of ATL

Example 6.20 (Preimage operator for ATL)

1 What is the preimage of {q2, q3}?
2 What is the preimage of {q2}?

Careful: The preimage depends on a group of agents which
try to reach a given region.

1 What is the preimage of {q2, q3} wrt. any group A?
2 What is the preimage of {q2} wrt. {1} and {2}?

q1

q2

q3

q4

r

s

q5

r

r

s
(1, 2)

(2, 1)

(1, 1)

(1, 1)

(2, 1)

(1, 1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 240

6 Algorithmic Verification of Models
6.5 MC of ATL

Example 6.20 (Preimage operator for ATL)

1 What is the preimage of {q2, q3}?
2 What is the preimage of {q2}?

Careful: The preimage depends on a group of agents which
try to reach a given region.

1 What is the preimage of {q2, q3} wrt. any group A?
2 What is the preimage of {q2} wrt. {1} and {2}?

q1

q2

q3

q4

r

s

q5

r

r

s
(1, 2)

(2, 1)

(1, 1)

(1, 1)

(2, 1)

(1, 1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 240

6 Algorithmic Verification of Models
6.5 MC of ATL

function pre(M,A,Q).
Auxiliary function; returns the exact set of statesQ′ such that,
when the system is in a state q ∈ Q′, agents A can cooperate
and enforce the next state to be in Q.
return {q | ∃αA∀αAgt\A o(q, αA, αAgt\A) ∈ Q}

The function follows the same idea as the pre-image
function of CTL model checking.

Q1

pre(A, Q1)

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 241

6 Algorithmic Verification of Models
6.5 MC of ATL

Note that: ATL = ATLIr = ATLIR (cf. Theorem 2.20)

Theorem 6.21 (ATLIr and ATLIR [Alur et al., 2002])

Model checking ATLIr and ATLIR is P -complete, and can be
done in time O(|M| · |ϕ|), where |M| is given by the number
of transitions inM.

Note, that the size ofM is exponential in the number of
states and agents!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 242

6 Algorithmic Verification of Models
6.5 MC of ATL

Note that: ATL = ATLIr = ATLIR (cf. Theorem 2.20)

Theorem 6.21 (ATLIr and ATLIR [Alur et al., 2002])

Model checking ATLIr and ATLIR is P -complete, and can be
done in time O(|M| · |ϕ|), where |M| is given by the number
of transitions inM.

Note, that the size ofM is exponential in the number of
states and agents!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 242

6 Algorithmic Verification of Models
6.5 MC of ATL

Note that: ATL = ATLIr = ATLIR (cf. Theorem 2.20)

Theorem 6.21 (ATLIr and ATLIR [Alur et al., 2002])

Model checking ATLIr and ATLIR is P -complete, and can be
done in time O(|M| · |ϕ|), where |M| is given by the number
of transitions inM.

Note, that the size ofM is exponential in the number of
states and agents!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 242

6 Algorithmic Verification of Models
6.5 MC of ATL

Besides the new definition of the preimage function the
algorithm is the same as for CTL:

function mcheck(M,ϕ).
Returns states q withM, q |= ϕ.
case ϕ ∈ Π : return π(p)
case ϕ = ¬ψ : return St \mcheck(M,ψ)
case ϕ = ψ1 ∨ ψ2 : return mcheck(M,ψ1) ∪mcheck(M,ψ2)
case ϕ = 〈〈A〉〉 jψ : return pre(M,A,mcheck(M,ψ))
case ϕ = 〈〈A〉〉�ψ :
Q1 := St; Q2 := mcheck(M,ψ); Q3 := Q2;
while Q1 6⊆ Q2

do Q1 := Q2; Q2 := pre(M,A,Q1) ∩Q3 od;
return Q1

case ϕ = 〈〈A〉〉ψ1 U ψ2 :
Q1 := ∅; Q2 := mcheck(M,ψ1);
Q3 := mcheck(M,ψ2);
while Q3 6⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1) ∩Q2 od;
return Q1

end case
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 243

6 Algorithmic Verification of Models
6.5 MC of ATL

And-Or-Graph Reachability

For the lower bound, we reduce reachability in
and-or-graphs.

An and-or graph [Immerman, 1981]
is a tuple (E, V, l) such that G = (E, V) is a directed
acyclic graph and l : V → {∧,∨} a labeling function.

Let x1, . . . , xn denote all successor nodes of u. v is said to be
reachable from u iff

1 u = v; or
2 l(u) = ∧, n ≥ 1, and v is reachable from all xi’s; or,
3 l(u) = ∨, n ≥ 1, and v is reachable from some xi.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 244

6 Algorithmic Verification of Models
6.5 MC of ATL

And-Or-Graph Reachability

For the lower bound, we reduce reachability in
and-or-graphs.

An and-or graph [Immerman, 1981]
is a tuple (E, V, l) such that G = (E, V) is a directed
acyclic graph and l : V → {∧,∨} a labeling function.

Let x1, . . . , xn denote all successor nodes of u. v is said to be
reachable from u iff

1 u = v; or
2 l(u) = ∧, n ≥ 1, and v is reachable from all xi’s; or,
3 l(u) = ∨, n ≥ 1, and v is reachable from some xi.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 244

6 Algorithmic Verification of Models
6.5 MC of ATL

And-Or-Graph Reachability

For the lower bound, we reduce reachability in
and-or-graphs.

An and-or graph [Immerman, 1981]
is a tuple (E, V, l) such that G = (E, V) is a directed
acyclic graph and l : V → {∧,∨} a labeling function.

Let x1, . . . , xn denote all successor nodes of u. v is said to be
reachable from u iff

1 u = v; or
2 l(u) = ∧, n ≥ 1, and v is reachable from all xi’s; or,
3 l(u) = ∨, n ≥ 1, and v is reachable from some xi.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 244

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.22 ([Immerman, 1981])
The and-or-graph reachability problem is P -complete.

Proof: Lower Bound
Hardness is shown by a reduction of reachability in
And-Or-Graphs:

Transform and-or-graph to a CGS;

Player 1 owns or-states;

Player 2 owns and-states;

v reachable from a iffM, a |= 〈〈1〉〉♦lv.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 245

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.22 ([Immerman, 1981])
The and-or-graph reachability problem is P -complete.

Proof: Lower Bound
Hardness is shown by a reduction of reachability in
And-Or-Graphs:

Transform and-or-graph to a CGS;

Player 1 owns or-states;

Player 2 owns and-states;

v reachable from a iffM, a |= 〈〈1〉〉♦lv.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 245

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.22 ([Immerman, 1981])
The and-or-graph reachability problem is P -complete.

Proof: Lower Bound
Hardness is shown by a reduction of reachability in
And-Or-Graphs:

Transform and-or-graph to a CGS;

Player 1 owns or-states;

Player 2 owns and-states;

v reachable from a iffM, a |= 〈〈1〉〉♦lv.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 245

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.22 ([Immerman, 1981])
The and-or-graph reachability problem is P -complete.

Proof: Lower Bound
Hardness is shown by a reduction of reachability in
And-Or-Graphs:

Transform and-or-graph to a CGS;

Player 1 owns or-states;

Player 2 owns and-states;

v reachable from a iffM, a |= 〈〈1〉〉♦lv.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 245

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.22 ([Immerman, 1981])
The and-or-graph reachability problem is P -complete.

Proof: Lower Bound
Hardness is shown by a reduction of reachability in
And-Or-Graphs:

Transform and-or-graph to a CGS;

Player 1 owns or-states;

Player 2 owns and-states;

v reachable from a iffM, a |= 〈〈1〉〉♦lv.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 245

6 Algorithmic Verification of Models
6.5 MC of ATL

ATL∗ with perfect recall
For perfect recall, we cannot simply guess a strategy
St+ → Act.

For model checking an automata theoretic approach is
used. Consider the formula 〈〈A〉〉ψ where ψ ∈ LLTL and CGS
M and a state q.

1 A tree automaton AM,q,A is used to accept all possible
executions inM which can be enforced by A
following some strategy.

(Note: 〈〈A〉〉ψ says that there is some “tree” such that ψ
holds along all branches).

2 A tree automaton Aψ is constructed to accept all
(tree-like) models satisfying the LCTL∗-formula Aψ.

3 We have: M, q |= 〈〈A〉〉ψ iff L(AM,q,A) ∩ L(Aψ) 6= ∅.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 246

6 Algorithmic Verification of Models
6.5 MC of ATL

ATL∗ with perfect recall
For perfect recall, we cannot simply guess a strategy
St+ → Act.

For model checking an automata theoretic approach is
used. Consider the formula 〈〈A〉〉ψ where ψ ∈ LLTL and CGS
M and a state q.

1 A tree automaton AM,q,A is used to accept all possible
executions inM which can be enforced by A
following some strategy.

(Note: 〈〈A〉〉ψ says that there is some “tree” such that ψ
holds along all branches).

2 A tree automaton Aψ is constructed to accept all
(tree-like) models satisfying the LCTL∗-formula Aψ.

3 We have: M, q |= 〈〈A〉〉ψ iff L(AM,q,A) ∩ L(Aψ) 6= ∅.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 246

6 Algorithmic Verification of Models
6.5 MC of ATL

ATL∗ with perfect recall
For perfect recall, we cannot simply guess a strategy
St+ → Act.

For model checking an automata theoretic approach is
used. Consider the formula 〈〈A〉〉ψ where ψ ∈ LLTL and CGS
M and a state q.

1 A tree automaton AM,q,A is used to accept all possible
executions inM which can be enforced by A
following some strategy.

(Note: 〈〈A〉〉ψ says that there is some “tree” such that ψ
holds along all branches).

2 A tree automaton Aψ is constructed to accept all
(tree-like) models satisfying the LCTL∗-formula Aψ.

3 We have: M, q |= 〈〈A〉〉ψ iff L(AM,q,A) ∩ L(Aψ) 6= ∅.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 246

6 Algorithmic Verification of Models
6.5 MC of ATL

Execution trees

q1 q2

q1

q1 q2

q2q1 q1 q2

q1

q2

q1 q2

(α,α) (β,α) (α,α)

(α,β)

Tree unravelling (q1, {1})-execution tree

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 247

6 Algorithmic Verification of Models
6.5 MC of ATL

An (q, A)-execution tree is induced by out(q, sA) for
some strategy sA of A.
Intuitively, the transition relation of AM,q,A in a state q0
is constructed from the different choices which A can
enforce at q0.

q1

q2

q3

q4

q5

q0

(2, 3)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

q0

q1 q2 q3 q4 q5

q0

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 248

6 Algorithmic Verification of Models
6.5 MC of ATL

Theorem 6.23 (ATL*IR [Alur et al., 2002])

Model checking ATL*IR is 2EXPTIME-complete in the
number of transitions in the model and the length of the
formula.

Complexity: Size of the automata and checking emptiness.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 249

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

6.6 MC of MAS with
Imperfect Information/Recall

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 250

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Complexity Classes

Deterministic Turing machine (DTM)

infinite (readable and writable) tape
finitely many states
deterministic moves

Non-deterministic Turing machine (NTM)

Like a DTM but non-deterministic moves are allowed.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 251

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Complexity Classes

Deterministic Turing machine (DTM)

infinite (readable and writable) tape
finitely many states
deterministic moves

Non-deterministic Turing machine (NTM)

Like a DTM but non-deterministic moves are allowed.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 251

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Orcale Machine (OTM)

Let A be a language . An A-oracle machine is a DTM or
NTM with a subroutine which allows to decide in one
step whether w ∈ A for some word w.

For a complexity class C a C-oracle machine is a A-oracle
machine for any A ∈ C.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 252

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Orcale Machine (OTM)

Let A be a language . An A-oracle machine is a DTM or
NTM with a subroutine which allows to decide in one
step whether w ∈ A for some word w.
For a complexity class C a C-oracle machine is a A-oracle
machine for any A ∈ C.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 252

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Complexity Classes ΣP
2 , ∆P

2 , ∆P
3

ΣP
i : problems solvable in polynomial time by a

non-deterministic Turing machine making adaptive
queries to a ΣP

i−1 oracle; i.e. by ΣP
i−1-oracle polynomial

time NTMs.

ΣP
2 = NPNP: problems solvable in polynomial time by a

non-deterministic Turing machine making adaptive
queries to an NP oracle.
∆P

2 = PNP: A problem is in ∆P
2 = PNP if it can be solved

in deterministic polynomial time with subcalls to an
NP -oracle. We also have ∆P

3 := P [NPNP] and ∆P
1 = P .

P = ∆P
1 ⊆ ΣP

1 = NP ⊆ ∆P
2 ⊆ ΣP

2 ⊆ · · · ⊆ PH ⊆ PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 253

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Complexity Classes ΣP
2 , ∆P

2 , ∆P
3

ΣP
i : problems solvable in polynomial time by a

non-deterministic Turing machine making adaptive
queries to a ΣP

i−1 oracle; i.e. by ΣP
i−1-oracle polynomial

time NTMs.
ΣP

2 = NPNP: problems solvable in polynomial time by a
non-deterministic Turing machine making adaptive
queries to an NP oracle.

∆P
2 = PNP: A problem is in ∆P

2 = PNP if it can be solved
in deterministic polynomial time with subcalls to an
NP -oracle. We also have ∆P

3 := P [NPNP] and ∆P
1 = P .

P = ∆P
1 ⊆ ΣP

1 = NP ⊆ ∆P
2 ⊆ ΣP

2 ⊆ · · · ⊆ PH ⊆ PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 253

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Complexity Classes ΣP
2 , ∆P

2 , ∆P
3

ΣP
i : problems solvable in polynomial time by a

non-deterministic Turing machine making adaptive
queries to a ΣP

i−1 oracle; i.e. by ΣP
i−1-oracle polynomial

time NTMs.
ΣP

2 = NPNP: problems solvable in polynomial time by a
non-deterministic Turing machine making adaptive
queries to an NP oracle.
∆P

2 = PNP: A problem is in ∆P
2 = PNP if it can be solved

in deterministic polynomial time with subcalls to an
NP -oracle. We also have ∆P

3 := P [NPNP] and ∆P
1 = P .

P = ∆P
1 ⊆ ΣP

1 = NP ⊆ ∆P
2 ⊆ ΣP

2 ⊆ · · · ⊆ PH ⊆ PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 253

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?

1 exponentially many;
2 exponentially many;
3 infinitely many;
4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?
1 exponentially many;

2 exponentially many;
3 infinitely many;
4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?
1 exponentially many;
2 exponentially many;

3 infinitely many;
4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?
1 exponentially many;
2 exponentially many;
3 infinitely many;

4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?
1 exponentially many;
2 exponentially many;
3 infinitely many;
4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Number of Strategies
We have introduced four types of strategies:

1 ir-strategies;
2 Ir-strategies;
3 IR-strategies;
4 iR-strategies.

How many strategies are there for each type?
1 exponentially many;
2 exponentially many;
3 infinitely many;
4 infinitely many.

Exponentially many wrt the size of the input! ≈ |Act||Agt|·|St|

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 254

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Assume we are looking for a “good” Ir-strategy wrt some
property P . How complex is this task? (Upper bound)

It is in NP , provided P ∈ P !

1 Guess sA;
2 check whether sA satisfies P .

And the case for “good” ir-strategies?

It is also in NP , provided P ∈ P ! Why? What about
uniformity?

1 Guess Ir-strategy sA;
2 check whether it is an ir-strategy, i.e. for uniformity (St

is finite!);
3 check whether sA satisfies P .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 255

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Assume we are looking for a “good” Ir-strategy wrt some
property P . How complex is this task? (Upper bound)

It is in NP , provided P ∈ P !
1 Guess sA;
2 check whether sA satisfies P .

And the case for “good” ir-strategies?

It is also in NP , provided P ∈ P ! Why? What about
uniformity?

1 Guess Ir-strategy sA;
2 check whether it is an ir-strategy, i.e. for uniformity (St

is finite!);
3 check whether sA satisfies P .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 255

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Assume we are looking for a “good” Ir-strategy wrt some
property P . How complex is this task? (Upper bound)

It is in NP , provided P ∈ P !
1 Guess sA;
2 check whether sA satisfies P .

And the case for “good” ir-strategies?

It is also in NP , provided P ∈ P ! Why? What about
uniformity?

1 Guess Ir-strategy sA;
2 check whether it is an ir-strategy, i.e. for uniformity (St

is finite!);
3 check whether sA satisfies P .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 255

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Assume we are looking for a “good” Ir-strategy wrt some
property P . How complex is this task? (Upper bound)

It is in NP , provided P ∈ P !
1 Guess sA;
2 check whether sA satisfies P .

And the case for “good” ir-strategies?

It is also in NP , provided P ∈ P ! Why? What about
uniformity?

1 Guess Ir-strategy sA;
2 check whether it is an ir-strategy, i.e. for uniformity (St

is finite!);
3 check whether sA satisfies P .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 255

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

What if P is verifiable in C for an arbitrary complexity class
C?

Finding ir- and Ir-strategies is in NP C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 256

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

What if P is verifiable in C for an arbitrary complexity class
C?

Finding ir- and Ir-strategies is in

NP C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 256

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

What if P is verifiable in C for an arbitrary complexity class
C?

Finding ir- and Ir-strategies is in NP C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 256

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

What if P is verifiable in C for an arbitrary complexity class
C?

Finding ir- and Ir-strategies is in NP C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 256

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

What if P is verifiable in C for an arbitrary complexity class
C?

Finding ir- and Ir-strategies is in NP C.

What about perfect recall strategies?

There are infinitely many: So there is no general method!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 256

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Imperfect Information
Agent’s ability to identify a strategy as winning also varies
throughout the game in an arbitrary way (agents can learn
as well as forget). This suggests that winning strategies
cannot be synthesized incrementally.Indeed the fixpoint
characterisations do not hold! :

〈〈A〉〉�ϕ 6↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 6↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

How to model check a formulaM, q |= 〈〈A〉〉γ where γ
includes no nested cooperation modalities ?

Theorem 6.24 (ATLir)

Model checking ATLir is ∆P
2 -complete.

The lower bound is proven by a reduction of SNSAT1.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 257

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Imperfect Information
Agent’s ability to identify a strategy as winning also varies
throughout the game in an arbitrary way (agents can learn
as well as forget). This suggests that winning strategies
cannot be synthesized incrementally.Indeed the fixpoint
characterisations do not hold! :

〈〈A〉〉�ϕ 6↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 6↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

How to model check a formulaM, q |= 〈〈A〉〉γ where γ
includes no nested cooperation modalities ?

Theorem 6.24 (ATLir)

Model checking ATLir is ∆P
2 -complete.

The lower bound is proven by a reduction of SNSAT1.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 257

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Imperfect Information
Agent’s ability to identify a strategy as winning also varies
throughout the game in an arbitrary way (agents can learn
as well as forget). This suggests that winning strategies
cannot be synthesized incrementally.Indeed the fixpoint
characterisations do not hold! :

〈〈A〉〉�ϕ 6↔ ϕ ∧ 〈〈A〉〉 j〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1 U ϕ2 6↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 j〈〈A〉〉ϕ1 U ϕ2.

How to model check a formulaM, q |= 〈〈A〉〉γ where γ
includes no nested cooperation modalities ?

Theorem 6.24 (ATLir)

Model checking ATLir is ∆P
2 -complete.

The lower bound is proven by a reduction of SNSAT1.J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 257

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Recall: ∆P
2 = PNP

Proof: Upper Bound

Let 〈〈A〉〉γ be given where γ includes no nested cooperation
modalities.

1 Guess a strategy sA of A.

2 “ Prune”M toM|sA; i.e. remove transitions that cannot
occur according to sA.

3 Remove labels fromM|sA and interpret it as Kripke
structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iffM′|sA , q |=CTL Aγ

The basic idea is to guess a strategy and apply CTL model
checking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 258

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Recall: ∆P
2 = PNP

Proof: Upper Bound

Let 〈〈A〉〉γ be given where γ includes no nested cooperation
modalities.

1 Guess a strategy sA of A.
2 “ Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.

3 Remove labels fromM|sA and interpret it as Kripke
structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iffM′|sA , q |=CTL Aγ

The basic idea is to guess a strategy and apply CTL model
checking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 258

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Recall: ∆P
2 = PNP

Proof: Upper Bound

Let 〈〈A〉〉γ be given where γ includes no nested cooperation
modalities.

1 Guess a strategy sA of A.
2 “ Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove labels fromM|sA and interpret it as Kripke

structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iffM′|sA , q |=CTL Aγ

The basic idea is to guess a strategy and apply CTL model
checking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 258

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Recall: ∆P
2 = PNP

Proof: Upper Bound

Let 〈〈A〉〉γ be given where γ includes no nested cooperation
modalities.

1 Guess a strategy sA of A.
2 “ Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove labels fromM|sA and interpret it as Kripke

structureM′|sA
4 Then,

M, q |= 〈〈A〉〉γ iffM′|sA , q |=CTL Aγ

The basic idea is to guess a strategy and apply CTL model
checking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 258

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Recall: ∆P
2 = PNP

Proof: Upper Bound

Let 〈〈A〉〉γ be given where γ includes no nested cooperation
modalities.

1 Guess a strategy sA of A.
2 “ Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove labels fromM|sA and interpret it as Kripke

structureM′|sA
4 Then,

M, q |= 〈〈A〉〉γ iffM′|sA , q |=CTL Aγ

The basic idea is to guess a strategy and apply CTL model
checking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 258

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

ATL and CTL: Pruning

(α,α)

(α,α)(α,α)

(α,α)

(α,α)

(α,α)

(α,α)

(β,α)

(β,α)

(α,β) (α,β)

(α,β) (α,α)(α,α)

(β,α)

Guess the strategy s1 in which 1 always plays α .

〈〈1〉〉♦γ guess s1 , check A♦γ in the pruned model

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 259

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Model Checking ATL∗ with memoryless
strategies
To solve the model checking problem for ATL*Ir we make
use of CTL∗ model checking.

The basic idea for model checking 〈〈A〉〉ψ is as follows:

1 Guess a strategy sA : St→ Act|A| (in NP).

2 Prune the model; i.e. remove transitions which cannot
occur.

3 CTL∗ model check Aψ in the resulting model.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 260

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Pruning the model
We can reduce model checking to model checking CTL∗:

(α,α)

(α,α)(α,α)

(α,α)

(α,α)

(α,α)

(α,α)

(β,α)

(β,α)

(α,β) (α,β)

(α,β) (α,α)(α,α)

(β,α)

Guess the strategy s1 in which 1 always plays α .

〈〈1〉〉�♦γ guess s1 , check A�♦γ in the pruned model

s1: agent 1 plays α in all states.
J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 261

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Theorem 6.25 (ATL*ir and ATL*Ir [Schobbens, 2004])

Model checking ATL*ir and ATL*Ir is PSPACE-complete in the
number of transitions in the model and the length of the
formula.

Proof: Lower Bound
LTL model checking is a special case of LATL∗ model
checking: PSPACE -hard.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 262

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Proof: Upper Bound

Let 〈〈A〉〉ψ where ψ is an LLTL-formula.
1 Guess an Ir-strategy (resp. ir-strategy) sA of A.

2 “Prune”M toM|sA; i.e. remove transitions that cannot
occur according to sA.

3 Remove transition labels fromM|sA and interpret it as
Kripke structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iff M′|sA , q |=CTL∗ Aγ

This procedure can be performed in NPPSPACE , which
renders the complexity of the whole language to be in
PNPPSPACE

= PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 263

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Proof: Upper Bound

Let 〈〈A〉〉ψ where ψ is an LLTL-formula.
1 Guess an Ir-strategy (resp. ir-strategy) sA of A.
2 “Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.

3 Remove transition labels fromM|sA and interpret it as
Kripke structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iff M′|sA , q |=CTL∗ Aγ

This procedure can be performed in NPPSPACE , which
renders the complexity of the whole language to be in
PNPPSPACE

= PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 263

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Proof: Upper Bound

Let 〈〈A〉〉ψ where ψ is an LLTL-formula.
1 Guess an Ir-strategy (resp. ir-strategy) sA of A.
2 “Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove transition labels fromM|sA and interpret it as

Kripke structureM′|sA

4 Then,
M, q |= 〈〈A〉〉γ iff M′|sA , q |=CTL∗ Aγ

This procedure can be performed in NPPSPACE , which
renders the complexity of the whole language to be in
PNPPSPACE

= PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 263

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Proof: Upper Bound

Let 〈〈A〉〉ψ where ψ is an LLTL-formula.
1 Guess an Ir-strategy (resp. ir-strategy) sA of A.
2 “Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove transition labels fromM|sA and interpret it as

Kripke structureM′|sA
4 Then,

M, q |= 〈〈A〉〉γ iff M′|sA , q |=CTL∗ Aγ

This procedure can be performed in NPPSPACE , which
renders the complexity of the whole language to be in
PNPPSPACE

= PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 263

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Proof: Upper Bound

Let 〈〈A〉〉ψ where ψ is an LLTL-formula.
1 Guess an Ir-strategy (resp. ir-strategy) sA of A.
2 “Prune”M toM|sA; i.e. remove transitions that cannot

occur according to sA.
3 Remove transition labels fromM|sA and interpret it as

Kripke structureM′|sA
4 Then,

M, q |= 〈〈A〉〉γ iff M′|sA , q |=CTL∗ Aγ

This procedure can be performed in NPPSPACE , which
renders the complexity of the whole language to be in
PNPPSPACE

= PSPACE .

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 263

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Imperfect Information and Perfect
Recall
Conjecture 6.26 (ATLiR)

Model checking ATLiR is undecidable.

Recently, a proof has been proposed by Dima and Tiplea
(June 2010).

Conjecture 6.27 (ATL*iR)

Model checking ATL*iR is undecidable.

Conjecture 6.28 (ATL+
iR)

Model checking ATL+iR is undecidable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 264

6 Algorithmic Verification of Models
6.6 MC of MAS with Imperfect Information/Recall

Imperfect Information and Perfect
Recall
Conjecture 6.26 (ATLiR)

Model checking ATLiR is undecidable.

Recently, a proof has been proposed by Dima and Tiplea
(June 2010).

Conjecture 6.27 (ATL*iR)

Model checking ATL*iR is undecidable.

Conjecture 6.28 (ATL+
iR)

Model checking ATL+iR is undecidable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 264

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

6.7 Summary of Complexity
Results

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 265

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

Nice results: model checking CTL and ATL is tractable.

But: the result is relative to the size of the model and
the formula
Well known catch (CTL): size of models is exponential
wrt a higher-level description
Another problem: transitions are labelled
So: the number of transitions can be exponential in
the number of agents.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 266

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

Nice results: model checking CTL and ATL is tractable.
But: the result is relative to the size of the model and
the formula

Well known catch (CTL): size of models is exponential
wrt a higher-level description
Another problem: transitions are labelled
So: the number of transitions can be exponential in
the number of agents.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 266

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

Nice results: model checking CTL and ATL is tractable.
But: the result is relative to the size of the model and
the formula
Well known catch (CTL): size of models is exponential
wrt a higher-level description

Another problem: transitions are labelled
So: the number of transitions can be exponential in
the number of agents.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 266

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

Nice results: model checking CTL and ATL is tractable.
But: the result is relative to the size of the model and
the formula
Well known catch (CTL): size of models is exponential
wrt a higher-level description
Another problem: transitions are labelled
So: the number of transitions can be exponential in
the number of agents.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 266

6 Algorithmic Verification of Models
6.7 Summary of Complexity Results

Ir IR ir iR
LATL P P ∆P

2 Undecidable†

LATL+ ∆P
3 PSPACE ∆P

3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Figure 6 : † These problems are believed to be undecidable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 267

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

6.8 Model Checking Agent
Language Models

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 268

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

An operational semantics describes the configurations
the system/program can be in and gives rules for
transforming between these configurations.
It provides an abstract view of the potential execution
(i.e. sequence of configuration changes) of any
program.
Given a specific program, we can work through the
program and, by examining the operational semantics,
can build a model of all the potential configurations
that the particular program can generate.
This model can then be checked against a logical
requirement.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 269

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

Promela and Spin.

In [Wooldridge et al., 2006] simple agent programs
were verified via a translation to SPIN.
In [Bordini et al., 2003], AgentSpeak programs were
translated to the PROMELA language and then the SPIN

model-checker is used to verify its properties.
Note that subsequent work translated to JAVA and used
JPF.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 270

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

GOAL.

In [Jongmans et al., 2010], the operational semantics of
the GOAL agent programming language is used to
describe all the possible executions of a specific GOAL

program.
The on-the-fly algorithmic verification techniques are
used to explore all these potential executions.
This provides quite an efficient verification mechanism
for GOAL programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 271

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

Rewriting

Given that the formal semantics of an agent language is
often given in terms of rewrite rules (especially if it is an
operational semantics) then an alternative way to tackle
verification would be to base it on some underlying
rewrite system.
This clearly has some link to the use of an underlying
logic programming system as well as a link to the
model-checking approaches based on operational
semantics that we consider here.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 272

6 Algorithmic Verification of Models
6.8 Model Checking Agent Language Models

MAUDE System

The predominant rewrite system is MAUDE which
provides an efficient and flexible rewriting
basis [Clavel et al., 2003].
Indeed, the operational semantics of several agent
languages have been translated to MAUDE

input [van Riemsdijk et al., 2006,
Farwer and Dennis, 2007].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 273

7 Algorithmic Verification of Programs

7. Algorithmic Verification of Programs

7 Algorithmic Verification of Programs
AIL Semantic Toolkit
Multiple Semantics
AJPF Model Checking

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 274

7 Algorithmic Verification of Programs

As we have seen, it is certainly possible to verify an agent
program by building a model of its execution and then
algorithmically verifying this model with respect to some
requirement.

Yet, a very appealing approach to verification is to verify
the actual program rather than a model of it.

→ But, is this possible for agent programs?

→ If so, how does this work?

→ And will it work for many different agent programs?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 275

7 Algorithmic Verification of Programs

As we have seen, it is certainly possible to verify an agent
program by building a model of its execution and then
algorithmically verifying this model with respect to some
requirement.

Yet, a very appealing approach to verification is to verify
the actual program rather than a model of it.

→ But, is this possible for agent programs?

→ If so, how does this work?

→ And will it work for many different agent programs?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 275

7 Algorithmic Verification of Programs

As we have seen, it is certainly possible to verify an agent
program by building a model of its execution and then
algorithmically verifying this model with respect to some
requirement.

Yet, a very appealing approach to verification is to verify
the actual program rather than a model of it.

→ But, is this possible for agent programs?

→ If so, how does this work?

→ And will it work for many different agent programs?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 275

7 Algorithmic Verification of Programs

As we have seen, it is certainly possible to verify an agent
program by building a model of its execution and then
algorithmically verifying this model with respect to some
requirement.

Yet, a very appealing approach to verification is to verify
the actual program rather than a model of it.

→ But, is this possible for agent programs?

→ If so, how does this work?

→ And will it work for many different agent programs?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 275

7 Algorithmic Verification of Programs

As we have seen, it is certainly possible to verify an agent
program by building a model of its execution and then
algorithmically verifying this model with respect to some
requirement.

Yet, a very appealing approach to verification is to verify
the actual program rather than a model of it.

→ But, is this possible for agent programs?

→ If so, how does this work?

→ And will it work for many different agent programs?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 275

7 Algorithmic Verification of Programs

General Problem
So, we wish to verify an agent program by exploring its
executions directly, rather than building a model (typically a
finite-state automaton) and checking that.

Once we have an operational semantics then, in principle,
we should be able to achieve such program checking.

However, this is far from simple to implement!

Consequently, the agent program verification system we
describe here takes advantage of sophisticated program
verification systems for non-agent programs.

Specifically, it extends the JAVA PATHFINDER system for
checking JAVA programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 276

7 Algorithmic Verification of Programs

General Problem
So, we wish to verify an agent program by exploring its
executions directly, rather than building a model (typically a
finite-state automaton) and checking that.

Once we have an operational semantics then, in principle,
we should be able to achieve such program checking.

However, this is far from simple to implement!

Consequently, the agent program verification system we
describe here takes advantage of sophisticated program
verification systems for non-agent programs.

Specifically, it extends the JAVA PATHFINDER system for
checking JAVA programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 276

7 Algorithmic Verification of Programs

General Problem
So, we wish to verify an agent program by exploring its
executions directly, rather than building a model (typically a
finite-state automaton) and checking that.

Once we have an operational semantics then, in principle,
we should be able to achieve such program checking.

However, this is far from simple to implement!

Consequently, the agent program verification system we
describe here takes advantage of sophisticated program
verification systems for non-agent programs.

Specifically, it extends the JAVA PATHFINDER system for
checking JAVA programs.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 276

7 Algorithmic Verification of Programs

Checking Agent Programs

Recall how program verification works, based on the “on
the fly” model-checking seen earlier.

Model of the System Model of "Bad" paths Parallel
Exploration

 ||

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 277

7 Algorithmic Verification of Programs

Checking Agent Programs (cont.)

In the particular case of JAVA PATHFINDER, a modified JAVA

virtual machine has been developed which allows both the
parallel checking of properties and the backtracking of
system executions.

The MCAPL framework [Dennis et al., 2012] comprises the
AIL semantic toolkit, the MCAPL interface, and the AJPF
model-checker.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 278

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

7.1 AIL Semantic Toolkit

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 279

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Operational Semantics: Creation
What do we do when we write an operational semantics for
our favourite agent programming language?

We decide on the essential configurations in the
system, for example in a BDI-like language we might
record the current beliefs, current intentions,
suspended intentions, applicable plans, etc.

Then we define allowable transitions between these
configurations, corresponding to how the language
works. A basic transition could be

add_belief(b)
〈Beliefs, Intentions, . . .〉 −→ 〈Beliefs ∪ {b}, Intentions, . . .〉

where the set of beliefs is updated with the new belief,
‘b’, to generate a new configuration.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 280

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Operational Semantics: Creation
What do we do when we write an operational semantics for
our favourite agent programming language?

We decide on the essential configurations in the
system, for example in a BDI-like language we might
record the current beliefs, current intentions,
suspended intentions, applicable plans, etc.
Then we define allowable transitions between these
configurations, corresponding to how the language
works. A basic transition could be

add_belief(b)
〈Beliefs, Intentions, . . .〉 −→ 〈Beliefs ∪ {b}, Intentions, . . .〉

where the set of beliefs is updated with the new belief,
‘b’, to generate a new configuration.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 280

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Operational Semantics: Use
We must generate many, usually more complex, transition
rules in order to provide the operational semantics of our
language.

Then there are two particular ways in which we might use
the operational semantics.

1 To provide an implementation
Since such an operational semantics essentially
describes a language interpreter then the language can
be implemented just by encoding the operational
semantic rules.

2 As part of verification
As we saw earlier, we might use the operational
semantics as the basis for a model-checker.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 281

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Operational Semantics: Use
We must generate many, usually more complex, transition
rules in order to provide the operational semantics of our
language.

Then there are two particular ways in which we might use
the operational semantics.

1 To provide an implementation
Since such an operational semantics essentially
describes a language interpreter then the language can
be implemented just by encoding the operational
semantic rules.

2 As part of verification
As we saw earlier, we might use the operational
semantics as the basis for a model-checker.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 281

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Operational Semantics: Use
We must generate many, usually more complex, transition
rules in order to provide the operational semantics of our
language.

Then there are two particular ways in which we might use
the operational semantics.

1 To provide an implementation
Since such an operational semantics essentially
describes a language interpreter then the language can
be implemented just by encoding the operational
semantic rules.

2 As part of verification
As we saw earlier, we might use the operational
semantics as the basis for a model-checker.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 281

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Support
However, every time we tackle a new agent programming
language we must go through this process again.

A particularly awkward aspect is defining how the
model-checking procedure accesses/evaluates beliefs,
intentions, etc., within the agent execution.

Since many agent languages are actually very similar, then
there is surely scope for some re-use of the above aspects.

Agent Infrastructure Layer (AIL)

The AIL is essentially a toolkit that aids the development of
all the above aspects for BDI-like, JAVA-based, agent
programming languages [Dennis et al., 2012].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 282

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Support
However, every time we tackle a new agent programming
language we must go through this process again.

A particularly awkward aspect is defining how the
model-checking procedure accesses/evaluates beliefs,
intentions, etc., within the agent execution.

Since many agent languages are actually very similar, then
there is surely scope for some re-use of the above aspects.

Agent Infrastructure Layer (AIL)

The AIL is essentially a toolkit that aids the development of
all the above aspects for BDI-like, JAVA-based, agent
programming languages [Dennis et al., 2012].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 282

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Support
However, every time we tackle a new agent programming
language we must go through this process again.

A particularly awkward aspect is defining how the
model-checking procedure accesses/evaluates beliefs,
intentions, etc., within the agent execution.

Since many agent languages are actually very similar, then
there is surely scope for some re-use of the above aspects.

Agent Infrastructure Layer (AIL)

The AIL is essentially a toolkit that aids the development of
all the above aspects for BDI-like, JAVA-based, agent
programming languages [Dennis et al., 2012].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 282

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

Support
However, every time we tackle a new agent programming
language we must go through this process again.

A particularly awkward aspect is defining how the
model-checking procedure accesses/evaluates beliefs,
intentions, etc., within the agent execution.

Since many agent languages are actually very similar, then
there is surely scope for some re-use of the above aspects.

Agent Infrastructure Layer (AIL)

The AIL is essentially a toolkit that aids the development of
all the above aspects for BDI-like, JAVA-based, agent
programming languages [Dennis et al., 2012].

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 282

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (1)
When you have an idea for a new agent programming
language, you can access the AIL toolkit to build an
operational semantics for the language.

Once such a semantics is built, the AIL toolkit naturally
provides a JAVA implementation (since the semantic
elements are all objects/classes within JAVA) and also
provides ways in which a special model-checker (called
AJPF) can access the components of the semantics.

Although AIL provides a wide range of “ready made”
semantic components and rules corresponding to typical
BDI language features, the developer still has the capability
to write new semantic rules (so long as they respect the
interfaces and interactions required).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 283

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (1)
When you have an idea for a new agent programming
language, you can access the AIL toolkit to build an
operational semantics for the language.

Once such a semantics is built, the AIL toolkit naturally
provides a JAVA implementation (since the semantic
elements are all objects/classes within JAVA) and also
provides ways in which a special model-checker (called
AJPF) can access the components of the semantics.

Although AIL provides a wide range of “ready made”
semantic components and rules corresponding to typical
BDI language features, the developer still has the capability
to write new semantic rules (so long as they respect the
interfaces and interactions required).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 283

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (1)
When you have an idea for a new agent programming
language, you can access the AIL toolkit to build an
operational semantics for the language.

Once such a semantics is built, the AIL toolkit naturally
provides a JAVA implementation (since the semantic
elements are all objects/classes within JAVA) and also
provides ways in which a special model-checker (called
AJPF) can access the components of the semantics.

Although AIL provides a wide range of “ready made”
semantic components and rules corresponding to typical
BDI language features, the developer still has the capability
to write new semantic rules (so long as they respect the
interfaces and interactions required).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 283

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (2)
When we run a program in our new agent programming
language
→ run it in an AIL-based interpreter which utilizes special

AIL data structures to store the agent’s internal
configuration (typically, beliefs, intentions, plans, etc).

AIL also provides support for describing the agent’s
reasoning cycle within the operational semantics.
→ defines how the agent’s practical reasoning progresses,

depending on its current internal configuration.

→ AIL provides support for constructing reasoning cycles
along with a number of rules that typically appear in
the operational semantics of agent programming
languages.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 284

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (2)
When we run a program in our new agent programming
language
→ run it in an AIL-based interpreter which utilizes special

AIL data structures to store the agent’s internal
configuration (typically, beliefs, intentions, plans, etc).

AIL also provides support for describing the agent’s
reasoning cycle within the operational semantics.
→ defines how the agent’s practical reasoning progresses,

depending on its current internal configuration.

→ AIL provides support for constructing reasoning cycles
along with a number of rules that typically appear in
the operational semantics of agent programming
languages.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 284

7 Algorithmic Verification of Programs
7.1 AIL Semantic Toolkit

AIL Semantic Toolkit (2)
When we run a program in our new agent programming
language
→ run it in an AIL-based interpreter which utilizes special

AIL data structures to store the agent’s internal
configuration (typically, beliefs, intentions, plans, etc).

AIL also provides support for describing the agent’s
reasoning cycle within the operational semantics.
→ defines how the agent’s practical reasoning progresses,

depending on its current internal configuration.

→ AIL provides support for constructing reasoning cycles
along with a number of rules that typically appear in
the operational semantics of agent programming
languages.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 284

7 Algorithmic Verification of Programs
7.2 Multiple Semantics

7.2 Multiple Semantics

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 285

7 Algorithmic Verification of Programs
7.2 Multiple Semantics

Heterogeneous Multi-Agent Systems
By using a common semantic base, we are able to define the
formal semantics for many agent programming languages.

For example, in [Dennis and Fisher, 2008], the AIL is used to
provide semantics for

GOAL [de Boer et al., 2007],
SAAPL [Winikoff, 2007], and
Gwendolen [Dennis and Farwer, 2008].

Not only can such agents be developed and verified
separately, but the fact that the semantics for all three are
built on a common basis means that heterogeneous
multi-agent systems can be verified.

A system comprising GOAL, SAAPL, and Gwendolen
agents communicating together can be verified.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 286

7 Algorithmic Verification of Programs
7.2 Multiple Semantics

Heterogeneous Multi-Agent Systems
By using a common semantic base, we are able to define the
formal semantics for many agent programming languages.

For example, in [Dennis and Fisher, 2008], the AIL is used to
provide semantics for

GOAL [de Boer et al., 2007],
SAAPL [Winikoff, 2007], and
Gwendolen [Dennis and Farwer, 2008].

Not only can such agents be developed and verified
separately, but the fact that the semantics for all three are
built on a common basis means that heterogeneous
multi-agent systems can be verified.

A system comprising GOAL, SAAPL, and Gwendolen
agents communicating together can be verified.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 286

7 Algorithmic Verification of Programs
7.2 Multiple Semantics

Heterogeneous Multi-Agent Systems
By using a common semantic base, we are able to define the
formal semantics for many agent programming languages.

For example, in [Dennis and Fisher, 2008], the AIL is used to
provide semantics for

GOAL [de Boer et al., 2007],
SAAPL [Winikoff, 2007], and
Gwendolen [Dennis and Farwer, 2008].

Not only can such agents be developed and verified
separately, but the fact that the semantics for all three are
built on a common basis means that heterogeneous
multi-agent systems can be verified.

A system comprising GOAL, SAAPL, and Gwendolen
agents communicating together can be verified.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 286

7 Algorithmic Verification of Programs
7.2 Multiple Semantics

Heterogeneous Multi-Agent Systems
By using a common semantic base, we are able to define the
formal semantics for many agent programming languages.

For example, in [Dennis and Fisher, 2008], the AIL is used to
provide semantics for

GOAL [de Boer et al., 2007],
SAAPL [Winikoff, 2007], and
Gwendolen [Dennis and Farwer, 2008].

Not only can such agents be developed and verified
separately, but the fact that the semantics for all three are
built on a common basis means that heterogeneous
multi-agent systems can be verified.

A system comprising GOAL, SAAPL, and Gwendolen
agents communicating together can be verified.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 286

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

7.3 AJPF Model Checking

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 287

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

AJPF Internals
Since we have not yet explained how agents built using AIL
semantic definitions are verified, we will turn to this next.

The AIL toolkit collects together Java classes that can be
verified through AJPF, an extended version of the Java
Pathfinder system.

When a language interpreter that has been developed using
AIL is executed, then the interpreter communicates with the
AJPF model checker.

In particular, the interpreter will notify AJPF each time a new
state is reached that is relevant to the verification, while AJPF
can, through the AIL structures, access all the internal details
of the agent’s execution.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 288

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

AJPF Exploration
Since AJPF is based on the JPF system it exhaustively
explores the execution of the agent, backtracking if
necessary through the underlying virtual machine.

In parallel a Java listener object ‘watches’ for important
steps through the execution (where ‘important’ is defined
within the AIL semantic definitions) and tries to match its
internal automaton to the execution it is seeing.

Java Interpretation of
 the Agent Program

 Java listener object encapsulating
a model of the "Bad" possible paths

 Parallel
Exploration

 ||

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 289

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

AJPF Exploration
Since AJPF is based on the JPF system it exhaustively
explores the execution of the agent, backtracking if
necessary through the underlying virtual machine.

In parallel a Java listener object ‘watches’ for important
steps through the execution (where ‘important’ is defined
within the AIL semantic definitions) and tries to match its
internal automaton to the execution it is seeing.

Java Interpretation of
 the Agent Program

 Java listener object encapsulating
a model of the "Bad" possible paths

 Parallel
Exploration

 ||

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 289

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

Schematic Diagram of the AJPF Architecture

Legend: optionalAIL

AJPF property handling

Multi-Agent Program
AJPF verification target

(AgentSpeak , 3APL,
Jadex, MetateM, GOAL,
Gwendolen, SAAPL, ...)

AJPF

language
translation

AJPF controller object

Objects
program specific AIL

Büchi Automaton
AJPF objects

property
specification

JPF verification target
(Java bytecode

program)

choice
generator

Virtual Machine

Search Strategy

data/scheduling
heuristics

state
management

AJPF
listener

LTL-based PSL
property checker

VM
driver

search
listener

property
checker

search
observation

system/
apps

Core JPF

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 290

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

Speed Issues

Program model checking is significantly slower than
standard model-checking applied to models of the program
execution.

Thus, verifications in AJPF take minutes and hours, rather
than seconds with tools such as SPIN or NUSMV.

In spite of this, agent program verification is clearly very
useful.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 291

7 Algorithmic Verification of Programs
7.3 AJPF Model Checking

Future
Not only does AIL make it easier to develop agent
programming language interpreters, but it also provides
easy access to sophisticated model-checking capabilities.

Importantly, the program that is model-checked is the
program that is run.

This allows the MCAPL (i.e. AIL+AJPF) framework to be used
in increasingly practical scenarios.

For example, in [Webster et al., 2011] this approach is used
to verify key parts of the control for an unmanned air
vehicle.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 292

8 Appendix: Automata Theory

8. Appendix: Automata Theory

8 Appendix: Automata Theory
Büchi Automata
Generalized Büchi Automata
Tree automata
Emptiness Checking
Determinization

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 293

8 Appendix: Automata Theory
8.1 Büchi Automata

8.1 Büchi Automata

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 294

8 Appendix: Automata Theory
8.1 Büchi Automata

Büchi Automata

We would like to use finite automata to solve the
model checking problem.

Finite automata (on finite words) accept only finite
words but paths are infinite.

We need to extend the model to finite automata that
accept infinite words.

How can we accept infinite words?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 295

8 Appendix: Automata Theory
8.1 Büchi Automata

Büchi Automata

We would like to use finite automata to solve the
model checking problem.

Finite automata (on finite words) accept only finite
words but paths are infinite.

We need to extend the model to finite automata that
accept infinite words.

How can we accept infinite words?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 295

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;

2 Σ is a finite alphabet;
3 ∆ ⊆ Q× Σ×Q a transition relation ;
4 qI is the initial state; and
5 C an acceptance component (which is specialised in the

following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;
2 Σ is a finite alphabet;

3 ∆ ⊆ Q× Σ×Q a transition relation ;
4 qI is the initial state; and
5 C an acceptance component (which is specialised in the

following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;
2 Σ is a finite alphabet;
3 ∆ ⊆ Q× Σ×Q a transition relation ;

4 qI is the initial state; and
5 C an acceptance component (which is specialised in the

following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;
2 Σ is a finite alphabet;
3 ∆ ⊆ Q× Σ×Q a transition relation ;
4 qI is the initial state; and

5 C an acceptance component (which is specialised in the
following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;
2 Σ is a finite alphabet;
3 ∆ ⊆ Q× Σ×Q a transition relation ;
4 qI is the initial state; and
5 C an acceptance component (which is specialised in the

following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.1 (ω-automaton)

An ω-automaton is a tuple

A = (Q,Σ,∆, qI , C)

where
1 Q is a finite set of states;
2 Σ is a finite alphabet;
3 ∆ ⊆ Q× Σ×Q a transition relation ;
4 qI is the initial state; and
5 C an acceptance component (which is specialised in the

following).

The crucial point is the acceptance component!

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 296

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.2 (Run)

A run ρ = ρ(0)ρ(1) · · · ∈ Qω of A on a word
w = w1w2 · · · ∈ Σω is an infinite sequence of states of A such
that:

1 ρ(0) =qI

2 ρ(i) ∈ ∆(ρ(i− 1), wi) for i ≥ 1.

How could we accept the following language?
L = {w ∈ {a, b}ω | w contains infinitely many a and only
finitely many b }.
Is it sufficient to reach a final state once?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 297

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.2 (Run)

A run ρ = ρ(0)ρ(1) · · · ∈ Qω of A on a word
w = w1w2 · · · ∈ Σω is an infinite sequence of states of A such
that:

1 ρ(0) =qI

2 ρ(i) ∈ ∆(ρ(i− 1), wi) for i ≥ 1.

How could we accept the following language?
L = {w ∈ {a, b}ω | w contains infinitely many a and only
finitely many b }.
Is it sufficient to reach a final state once?

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 297

8 Appendix: Automata Theory
8.1 Büchi Automata

We define Inf (ρ) as the set of all states that occur
infinitely often on ρ; that is,

Inf (ρ) = {q ∈ St | ∀i∃j(j > i ∧ ρ(j) = q)}

Definition 8.3 (Büchi automaton)

A Büchi automaton is an ω-automaton

A = (Q,Σ,∆, qI , F)

where F ⊆ Q with the following acceptance condition: A
accepts w ∈ Σω if, and only if, there is a run ρ of A such that

Inf (ρ) ∩ F 6= ∅.

This automaton accepts all words s.t.some state from F is
visited infinitely often on a corresponding run.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 298

8 Appendix: Automata Theory
8.1 Büchi Automata

We define Inf (ρ) as the set of all states that occur
infinitely often on ρ; that is,

Inf (ρ) = {q ∈ St | ∀i∃j(j > i ∧ ρ(j) = q)}

Definition 8.3 (Büchi automaton)

A Büchi automaton is an ω-automaton

A = (Q,Σ,∆, qI , F)

where F ⊆ Q with the following acceptance condition: A
accepts w ∈ Σω if, and only if, there is a run ρ of A such that

Inf (ρ) ∩ F 6= ∅.

This automaton accepts all words s.t.some state from F is
visited infinitely often on a corresponding run.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 298

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.4 (Acceptable language)

The language accepted by A, L(A), consists of all words
accepted by A. That is,

L(A) = {w ∈ Σω | A accepts w}.

A language is said to be (Büchi) acceptable if there is a
Büchi automaton that accepts it.

Remark 8.5 (Other automata types)

Other acceptance conditions yield different automata types:
Rabin automata, Muller automata.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 299

8 Appendix: Automata Theory
8.1 Büchi Automata

Definition 8.4 (Acceptable language)

The language accepted by A, L(A), consists of all words
accepted by A. That is,

L(A) = {w ∈ Σω | A accepts w}.

A language is said to be (Büchi) acceptable if there is a
Büchi automaton that accepts it.

Remark 8.5 (Other automata types)

Other acceptance conditions yield different automata types:
Rabin automata, Muller automata.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 299

8 Appendix: Automata Theory
8.1 Büchi Automata

Example 8.6

Is there a Büchi Automaton that accepts the following
language L over Σ = {a, b, c}?

L = {w ∈ Σω | w contains infinitely many a or b and only
finitely many c }

 blackboard

a,b

a,b
a,b,c

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 300

8 Appendix: Automata Theory
8.1 Büchi Automata

Example 8.6

Is there a Büchi Automaton that accepts the following
language L over Σ = {a, b, c}?

L = {w ∈ Σω | w contains infinitely many a or b and only
finitely many c }

 blackboard

a,b

a,b
a,b,c

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 300

8 Appendix: Automata Theory
8.1 Büchi Automata

Example 8.7

Is there a Büchi Automaton that accepts the following
language L over Σ = {a, b}?

L = {w ∈ Σω | w ends with aω or (ab)ω}

a

b

a

a

aa,b

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 301

8 Appendix: Automata Theory
8.1 Büchi Automata

Example 8.7

Is there a Büchi Automaton that accepts the following
language L over Σ = {a, b}?

L = {w ∈ Σω | w ends with aω or (ab)ω}

a

b

a

a

aa,b

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 301

8 Appendix: Automata Theory
8.1 Büchi Automata

Proposition 8.8 (Closure propeties)

1 Büchi acceptable languages are closed under union,
intersection, and negation.

2 If A is a regular language with ε 6∈ A, then, Aω is Büchi
acceptable.

3 If A is a regular language and B is Büchi recognizable,
then AB is Büchi acceptable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 302

8 Appendix: Automata Theory
8.1 Büchi Automata

Proposition 8.8 (Closure propeties)

1 Büchi acceptable languages are closed under union,
intersection, and negation.

2 If A is a regular language with ε 6∈ A, then, Aω is Büchi
acceptable.

3 If A is a regular language and B is Büchi recognizable,
then AB is Büchi acceptable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 302

8 Appendix: Automata Theory
8.1 Büchi Automata

Proposition 8.8 (Closure propeties)

1 Büchi acceptable languages are closed under union,
intersection, and negation.

2 If A is a regular language with ε 6∈ A, then, Aω is Büchi
acceptable.

3 If A is a regular language and B is Büchi recognizable,
then AB is Büchi acceptable.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 302

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union:

Nondeterministically guess which automata
should be executed. Exercise

Intersection:

Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise

Complement:

This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω:

Connect transitions to final states also with the
initial state Exercise

3 AB:

Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union: Nondeterministically guess which automata
should be executed. Exercise
Intersection:

Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise

Complement:

This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω:

Connect transitions to final states also with the
initial state Exercise

3 AB:

Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union: Nondeterministically guess which automata
should be executed. Exercise
Intersection: Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise
Complement:

This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω:

Connect transitions to final states also with the
initial state Exercise

3 AB:

Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union: Nondeterministically guess which automata
should be executed. Exercise
Intersection: Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise
Complement: This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω:

Connect transitions to final states also with the
initial state Exercise

3 AB:

Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union: Nondeterministically guess which automata
should be executed. Exercise
Intersection: Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise
Complement: This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω: Connect transitions to final states also with the
initial state Exercise

3 AB:

Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof sketch

1 Union: Nondeterministically guess which automata
should be executed. Exercise
Intersection: Product automaton yields a generalised
Büchi automaton. The acceptance set is given by
{F1 × S2, S1 × F2}. Exercise
Complement: This part is non-trivial and cannot be
done in the scope of this lecture.

2 Aω: Connect transitions to final states also with the
initial state Exercise

3 AB: Connect transitions to final states of the finite
automaton with the initial state of the Büchi
automaton. Exercise

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 303

8 Appendix: Automata Theory
8.1 Büchi Automata

Theorem 8.9 (Characterization Theorem)

A language L is Büchi acceptable if, and only if, there are
finitely many regular languages U1, . . . , Un and V1, . . . , Vn
such that

L =
⋃

i=1,...,n

Ui(Vi)
ω

This shows that any language L 6= ∅ acceptable by a Büchi
automaton contains an ultimately periodic word.

Example 8.10

For the language L = {w ∈ Σω | w ends with aω or (ab)ω}
from Example 8.7 we have that L =

Σ∗{a}ω ∪ Σ∗{ab}ω

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 304

8 Appendix: Automata Theory
8.1 Büchi Automata

Theorem 8.9 (Characterization Theorem)

A language L is Büchi acceptable if, and only if, there are
finitely many regular languages U1, . . . , Un and V1, . . . , Vn
such that

L =
⋃

i=1,...,n

Ui(Vi)
ω

This shows that any language L 6= ∅ acceptable by a Büchi
automaton contains an ultimately periodic word.

Example 8.10

For the language L = {w ∈ Σω | w ends with aω or (ab)ω}
from Example 8.7 we have that L =

Σ∗{a}ω ∪ Σ∗{ab}ω

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 304

8 Appendix: Automata Theory
8.1 Büchi Automata

Theorem 8.9 (Characterization Theorem)

A language L is Büchi acceptable if, and only if, there are
finitely many regular languages U1, . . . , Un and V1, . . . , Vn
such that

L =
⋃

i=1,...,n

Ui(Vi)
ω

This shows that any language L 6= ∅ acceptable by a Büchi
automaton contains an ultimately periodic word.

Example 8.10

For the language L = {w ∈ Σω | w ends with aω or (ab)ω}
from Example 8.7 we have that L =

Σ∗{a}ω ∪ Σ∗{ab}ω

.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 304

8 Appendix: Automata Theory
8.1 Büchi Automata

Theorem 8.9 (Characterization Theorem)

A language L is Büchi acceptable if, and only if, there are
finitely many regular languages U1, . . . , Un and V1, . . . , Vn
such that

L =
⋃

i=1,...,n

Ui(Vi)
ω

This shows that any language L 6= ∅ acceptable by a Büchi
automaton contains an ultimately periodic word.

Example 8.10

For the language L = {w ∈ Σω | w ends with aω or (ab)ω}
from Example 8.7 we have that L = Σ∗{a}ω ∪ Σ∗{ab}ω.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 304

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof of Theorem 8.9
“⇒”: Let W(q,q’) = {w ∈ Σ∗ | q →w q′}.

Each language
W (q, q′) is regular. Then,

L(A) =
⋃
q∈Qf

W (qI , q)(W (q, q))ω.

“⇐”: Let L =
⋃
i=1,...,n Ui(Vi)

ω where each Ui, Vi is regular. By
Proposition 8.8 we have that (Vi)

ω and Ui(Vi)ω are Büchi
recognizable. Thus also their finite union.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 305

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof of Theorem 8.9
“⇒”: Let W(q,q’) = {w ∈ Σ∗ | q →w q′}. Each language
W (q, q′) is regular.

Then,

L(A) =
⋃
q∈Qf

W (qI , q)(W (q, q))ω.

“⇐”: Let L =
⋃
i=1,...,n Ui(Vi)

ω where each Ui, Vi is regular. By
Proposition 8.8 we have that (Vi)

ω and Ui(Vi)ω are Büchi
recognizable. Thus also their finite union.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 305

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof of Theorem 8.9
“⇒”: Let W(q,q’) = {w ∈ Σ∗ | q →w q′}. Each language
W (q, q′) is regular. Then,

L(A) =
⋃
q∈Qf

W (qI , q)(W (q, q))ω.

“⇐”: Let L =
⋃
i=1,...,n Ui(Vi)

ω where each Ui, Vi is regular. By
Proposition 8.8 we have that (Vi)

ω and Ui(Vi)ω are Büchi
recognizable. Thus also their finite union.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 305

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof of Theorem 8.9
“⇒”: Let W(q,q’) = {w ∈ Σ∗ | q →w q′}. Each language
W (q, q′) is regular. Then,

L(A) =
⋃
q∈Qf

W (qI , q)(W (q, q))ω.

“⇐”: Let L =
⋃
i=1,...,n Ui(Vi)

ω where each Ui, Vi is regular.

By
Proposition 8.8 we have that (Vi)

ω and Ui(Vi)ω are Büchi
recognizable. Thus also their finite union.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 305

8 Appendix: Automata Theory
8.1 Büchi Automata

Proof of Theorem 8.9
“⇒”: Let W(q,q’) = {w ∈ Σ∗ | q →w q′}. Each language
W (q, q′) is regular. Then,

L(A) =
⋃
q∈Qf

W (qI , q)(W (q, q))ω.

“⇐”: Let L =
⋃
i=1,...,n Ui(Vi)

ω where each Ui, Vi is regular. By
Proposition 8.8 we have that (Vi)

ω and Ui(Vi)ω are Büchi
recognizable. Thus also their finite union.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 305

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

8.2 Generalized Büchi
Automata

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 306

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Definition 8.11 (Generalised Büchi automaton)

A generalised Büchi automaton is an ω-automaton

A = (Q,Σ,∆, qI , F)

where F ⊆ 2Q with the following acceptance condition: A
accepts w ∈ Σω if, and only if, there is a run ρ of A such that
for each Fi ∈ F

Inf (ρ) ∩ Fi 6= ∅.

Thus, such an automaton accepts all words such that some
state from each Fi is visited infinitely often on a
corresponding run.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 307

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

We will use generalised Büchi automata for model checking
LTL. How is the relation between Büchi and generalised
Büchi automata?

Proposition 8.12 (Generalised Büchi Büchi)

For each generalised Büchi automaton one can construct an
equivalent Büchi automaton.

Proof.
Idea: Consider state-tuples: S × {1, . . . , k}. If the GBA moves
to the next acceptance set a counter is incremented
(modulo k). Then, a run visits states from each Fi infinitely
often iff states from F1 × {1} appear infinitely often.

We first consider an example:

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 308

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

We will use generalised Büchi automata for model checking
LTL. How is the relation between Büchi and generalised
Büchi automata?
Proposition 8.12 (Generalised Büchi Büchi)

For each generalised Büchi automaton one can construct an
equivalent Büchi automaton.

Proof.
Idea: Consider state-tuples: S × {1, . . . , k}. If the GBA moves
to the next acceptance set a counter is incremented
(modulo k). Then, a run visits states from each Fi infinitely
often iff states from F1 × {1} appear infinitely often.

We first consider an example:

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 308

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

We will use generalised Büchi automata for model checking
LTL. How is the relation between Büchi and generalised
Büchi automata?
Proposition 8.12 (Generalised Büchi Büchi)

For each generalised Büchi automaton one can construct an
equivalent Büchi automaton.

Proof.
Idea: Consider state-tuples: S × {1, . . . , k}. If the GBA moves
to the next acceptance set a counter is incremented
(modulo k). Then, a run visits states from each Fi infinitely
often iff states from F1 × {1} appear infinitely often.

We first consider an example:

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 308

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Example 8.13

q1

a

a

b
b

q0

F1 F2

q0, 1 q1, 1

q1, 2q0, 2

a
a

a

a

b

b

b

b

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 309

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Example 8.13

q1

a

a

b
b

q0

F1 F2

q0, 1 q1, 1

q1, 2q0, 2

a
a

a

a

b

b

b

b

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 309

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
Let A = (Σ, S,∆, S0, {F1, . . . , Fn}) be a generalised Büchi
automaton. We construct the Büchi Automaton
A′ = (Σ, S ′,∆′, S ′0, F

′):
S ′ = S × {1, . . . , n};

S ′0 = S0 × {1};
((s, j), a, (t, i)) ∈ ∆′ iff

(s, a, t) ∈ ∆ and

{
i = j , if s 6∈ Fj;
i = (j + 1) mod k , if s ∈ Fj;

F ′ = F1 × {1}.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 310

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
Let A = (Σ, S,∆, S0, {F1, . . . , Fn}) be a generalised Büchi
automaton. We construct the Büchi Automaton
A′ = (Σ, S ′,∆′, S ′0, F

′):
S ′ = S × {1, . . . , n};
S ′0 = S0 × {1};

((s, j), a, (t, i)) ∈ ∆′ iff

(s, a, t) ∈ ∆ and

{
i = j , if s 6∈ Fj;
i = (j + 1) mod k , if s ∈ Fj;

F ′ = F1 × {1}.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 310

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
Let A = (Σ, S,∆, S0, {F1, . . . , Fn}) be a generalised Büchi
automaton. We construct the Büchi Automaton
A′ = (Σ, S ′,∆′, S ′0, F

′):
S ′ = S × {1, . . . , n};
S ′0 = S0 × {1};
((s, j), a, (t, i)) ∈ ∆′ iff

(s, a, t) ∈ ∆ and

{
i = j , if s 6∈ Fj;
i = (j + 1) mod k , if s ∈ Fj;

F ′ = F1 × {1}.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 310

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
Let A = (Σ, S,∆, S0, {F1, . . . , Fn}) be a generalised Büchi
automaton. We construct the Büchi Automaton
A′ = (Σ, S ′,∆′, S ′0, F

′):
S ′ = S × {1, . . . , n};
S ′0 = S0 × {1};
((s, j), a, (t, i)) ∈ ∆′ iff

(s, a, t) ∈ ∆ and

{
i = j , if s 6∈ Fj;
i = (j + 1) mod k , if s ∈ Fj;

F ′ = F1 × {1}.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 310

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
Let A = (Σ, S,∆, S0, {F1, . . . , Fn}) be a generalised Büchi
automaton. We construct the Büchi Automaton
A′ = (Σ, S ′,∆′, S ′0, F

′):
S ′ = S × {1, . . . , n};
S ′0 = S0 × {1};
((s, j), a, (t, i)) ∈ ∆′ iff

(s, a, t) ∈ ∆ and

{
i = j , if s 6∈ Fj;
i = (j + 1) mod k , if s ∈ Fj;

F ′ = F1 × {1}.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 310

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w.

Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ.

That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi.

Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often.

After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2)

and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited,

some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.2 Generalized Büchi Automata

Proof ctd.
It remains to prove that both automata accept the same
languages. We present the main ideas.
“⇒“: Let A be a GBA that accepts the word w. Then, there is
a run ρ such that states from each Fi, i = 1, . . . , k, occur
infinitely often on ρ. That is, there is an infinite subsequence
(q1 . . . qk)

ω of ρ such that qi ∈ Fi. Hence, the state (q1, 1) is
visited infinitely often in the automaton A′.

“⇐“: Let A′ accept the word w. Then, some state (q1, 1) with
q1 ∈ F1 is visited infinitely often. After it has been visited
once the automaton is in a state (q, 2) and can only return to
(q′, 1) if some state q ∈ F2 is visited, some from F3 and so on
is visited.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 311

8 Appendix: Automata Theory
8.3 Tree automata

8.3 Tree automata

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 312

8 Appendix: Automata Theory
8.3 Tree automata

As before let Σ be a finite alphabet and k a natural number.
A k-ary Σ-tree t = (domt, L) is a tree with maximal
branching k and in which each node is labelled by an
element from Σ. That is

L : domt → Σ

where domt ⊆ {0, . . . , k− 1}∗ denotes the domain of the tree.
It is required that domt is closed under prefixes, i.e.

wx ∈ domt → ∀y(0 ≤ y < x→ wy ∈ domt).

A k-ary ω-tree automaton over the alphabet Σ is an
automaton that accepts infinite k-ary Σ-trees.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 313

8 Appendix: Automata Theory
8.3 Tree automata

Definition 8.14 (k-ary ω-tree automaton)

A k-ary ω-tree automaton over the alphabet Σ is given by a
tuple

A = (St, qI ,∆, C)

where
St is a set of states,
qI ∈ St the initial state,
∆ : St× Σ× {1, . . . , k} → 2∪i=1...kSt

i with ∆(q, a, i) ⊆ Sti

a transition relation, and
C an acceptance component (which is specified in the
following).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 314

8 Appendix: Automata Theory
8.3 Tree automata

Definition 8.15 (Run, path, successful,
accepting)

A run of a k-ary ω-tree automaton A on an infinite k-ary
Σ-tree t = (domt, Lt) is an infinite k-ary St-tree
r = (domr, Lr) such that

1 domr = domt,
2 Lr(∅) = qI and
3 ∀w ∈ domt : (Lr(w0), . . . , Lr(wi)) ∈ ∆(Lr(w), Lt(w), i)

where i = max{j | wj ∈ domt}.
A path of the run r is an infinite linearly ordered subset of
domr (i.e. it denotes a branch in the tree). We say that run r
is successful if each path of r satisfies the accepting
condition C. An input tree t is accepted by A if there is a
successful run.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 315

8 Appendix: Automata Theory
8.3 Tree automata

Definition 8.16 (Büchi tree automaton)

A Büchi tree automaton is given by an ω-tree automaton
A = (St, qI ,∆, F) where F ⊆ St is a set of final states. A run
r = (domr, L) is successful if, and only if, for each path p on
r there is a state that occurs infinitely often on p; i.e. for all
paths p of r we have that

Inf (L|p) ∩ F 6= ∅.

L|p denotes the set of states in L which do also appear on p.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 316

8 Appendix: Automata Theory
8.3 Tree automata

Definition 8.17 (Rabin tree automaton)

A Rabin tree automaton (or pairs tree automaton) is given
by an ω-tree automaton A = (St, qI ,∆,Ω) where

Ω = {(L1, U1), . . . , (Ln, Un)}

where each pair (Li, Ui) ⊆ St× St is a set of “accepting”
pairs (these pairs are called Rabin pairs). A run r = (domr, L)
is successful if, and only if, for each path p on r there is an
index i ∈ {1, . . . , n} such that no state (resp. a state) from Li
(resp. from Ui) occurs infinitely often on p; i.e.

Inf (L|p) ∩ Li = ∅ and Inf (L|p) ∩ Ui 6= ∅

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 317

8 Appendix: Automata Theory
8.3 Tree automata

Theorem 8.18 ([Rabin, 1970])
There is a set of trees that is acceptable by a Rabin tree
automaton but not by any Büchi tree automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 318

8 Appendix: Automata Theory
8.4 Emptiness Checking

8.4 Emptiness Checking

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 319

8 Appendix: Automata Theory
8.4 Emptiness Checking

Checking Emptiness
For the model checking algorithms we need to check
whether the language of a Büchi automaton is empty.

Definition 8.19 (Graph reachability)

Let G = (V,E) be graph. Given two vertices u, v ∈ V the
graph-reachability problem is the question whether v is
reachable from u.

Theorem 8.20 ([Jones, 1977, Jones, 1975])
The graph-reachability problem is
NLOGSPACE-complete under logspace-reductions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 320

8 Appendix: Automata Theory
8.4 Emptiness Checking

Checking Emptiness
For the model checking algorithms we need to check
whether the language of a Büchi automaton is empty.

Definition 8.19 (Graph reachability)

Let G = (V,E) be graph. Given two vertices u, v ∈ V the
graph-reachability problem is the question whether v is
reachable from u.

Theorem 8.20 ([Jones, 1977, Jones, 1975])
The graph-reachability problem is
NLOGSPACE-complete under logspace-reductions.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 320

8 Appendix: Automata Theory
8.4 Emptiness Checking

Theorem 8.21 ([Emerson and Lei, 1987])
The emptiness problem for Büchi automata is solvable in
linear time and in nondeterministic logarithmic space .

Proof
We check whether there is some ultimately periodic word
by finding an accepting state reachable from the initial state
and from itself.

The following algorithm runs in
non-deterministic logarithmic space:

1 Guess an accepting state r, and
2 check whether reach(r, r).

 : Back to LTL model checking, pp. 571.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 321

8 Appendix: Automata Theory
8.4 Emptiness Checking

Theorem 8.21 ([Emerson and Lei, 1987])
The emptiness problem for Büchi automata is solvable in
linear time and in nondeterministic logarithmic space .

Proof
We check whether there is some ultimately periodic word
by finding an accepting state reachable from the initial state
and from itself. The following algorithm runs in
non-deterministic logarithmic space:

1 Guess an accepting state r, and
2 check whether reach(r, r).

 : Back to LTL model checking, pp. 571.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 321

8 Appendix: Automata Theory
8.4 Emptiness Checking

How does reach(x , y) work?
1 Chose some x-successor x′ (non-determinism!).
2 Return “yes”, if x′ = y else reach(x ′, y).

Hardness is shown by a reduction of the
NLOGSPACE-complete problem of graph reachability
from Definition 8.19. Given G, u, v, transform G to a Büchi
automaton with initial state u and final state v and add a
loop to v. Then:

v reachable from u in G iff automaton non-empty.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 322

8 Appendix: Automata Theory
8.4 Emptiness Checking

How does reach(x , y) work?
1 Chose some x-successor x′ (non-determinism!).
2 Return “yes”, if x′ = y else reach(x ′, y).

Hardness is shown by a reduction of the
NLOGSPACE-complete problem of graph reachability
from Definition 8.19. Given G, u, v, transform G to a Büchi
automaton with initial state u and final state v and add a
loop to v. Then:

v reachable from u in G iff automaton non-empty.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 322

8 Appendix: Automata Theory
8.4 Emptiness Checking

Theorem 8.22
([Rabin, 1970, Vardi and Wolper, 1984])
The emptiness problem for Büchi tree automata is decidable
and P -complete under logarithmic space reductions.

Theorem 8.23 ([Emerson and Jutla, 1988,
Pnueli and Rosner, 1989a])
The non-emptiness problem for Rabin tree automata is
decidable and complete for NP .

Theorem 8.24 ([Emerson and Jutla, 1999])
The non-emptiness problem for pairs tree automata is
decidable in deterministic time (mn)O(n) where m is the
number of states and n the number of pairs in the automaton.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 323

8 Appendix: Automata Theory
8.5 Determinization

8.5 Determinization

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 324

8 Appendix: Automata Theory
8.5 Determinization

Determinization of Automata

Theorem 8.25 (Safra’s construction [Safra, 1988])

Let A be a nondeterministic Büchi automaton with n states.
Then, there is an equivalent deterministic Rabin automaton
with 2O(n logn) states.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 325

9 Acknowledgements

9. Acknowledgements

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 326

9 Acknowledgements

Acknowledgements

Thanks to Nils Bulling for providing us with some of the
slides and pictures on modelchecking.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 327

10 References

10. References

9 References

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

Abadi, M. and Manna, Z. (1989).
Temporal Logic Programming.
Journal of Symbolic Computation, 8: 277–295.

Alechina, N., Dastani, M., Logan, B., and Meyer, J.-J. C. (2011).
Reasoning about Agent Deliberation.
Autonomous Agents and Multi-Agent Systems, 22(2):356–381.

Alur, R., Henzinger, T. A., and Kupferman, O. (1997).
Alternating-Time Temporal Logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pages 100–109. IEEE
Computer Society Press.

Alur, R., Henzinger, T. A., and Kupferman, O. (2002).
Alternating-Time Temporal Logic.
Journal of the ACM, 49:672–713.

Ammann, P. and Offutt, J. (2008).
Introduction to Software Testing.
Cambridge University Press.

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.

Ball, T. and Rajamani, S. K. (2001).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

The SLAM Toolkit.
In Proc. 13th International Conference on Computer Aided Verification (CAV), volume 2102 of LNCS, pages 260–264.
Springer.

Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M., editors (1996).
The Imperative Future: Principles of Executable Temporal Logics.
Research Studies Press.

Bordini, R. H., Fisher, M., Pardavila, C., and Wooldridge, M. (2003).
Model Checking AgentSpeak.
In Proc. 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2003).

Clarke, E. and Emerson, E. (1981).
Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic.
In Proc. Logics of Programs Workshop, volume 131 of Lecture Notes in Computer Science, pages 52–71.

Clarke, E., Emerson, E., and Sistla, A. (1986).
Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244–263.

Clarke, E. M., Grumberg, O., and Peled, D. (1999).
Model Checking.
MIT Press.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., and Talcott, C. (2003).
The Maude 2.0 System.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

In Nieuwenhuis, R., editor, Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture Notes in
Computer Science, pages 76–87. Springer-Verlag.

de Boer, F. S., Hindriks, K. V., van der Hoek, W., and Meyer, J.-J. C. (2007).
A Verification Framework for Agent Programming with Declarative Goals.
J. Applied Logic, 5(2):277–302.

Dennis, L. A. and Farwer, B. (2008).
Gwendolen: A BDI Language for Verifiable Agents.
In Löwe, B., editor, Proc. AISB’08 Workshop on Logic and the Simulation of Interaction and Reasoning, Aberdeen.
AISB.

Dennis, L. A. and Fisher, M. (2008).
Programming Verifiable Heterogeneous Agent Systems.
In Proc. 6th International Workshop on Programming in Multi-agent Systems (ProMAS), volume 5442 of LNCS,
pages 40–55. Springer Verlag.

Dennis, L. A., Fisher, M., Webster, M., and Bordini, R. H. (2012).
Model Checking Agent Programming Languages.
Automated Software Engineering, 19(1):5–63.

Dix, J., Kraus, S., and Subrahmanian, V. S. (2001).
Temporal Agent Programs.
Artificial Intelligence, 127(1):87–135.

Dix, J., Kraus, S., and Subrahmanian, V. S. (2006).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

Heterogeneous Temporal Probabilistic Agents.
ACM Trans. Comput. Log., 7(1):151–198.

Dixon, C., Fisher, M., and Bolotov, A. (2002).
Resolution in a Logic of Rational Agency.
Artificial Intelligence, 139(1):47–89.

Emerson, E. and Halpern, J. (1986).
“Sometimes” and “Not Never” Revisited: On Branching versus Linear Time Temporal Logic.
Journal of the ACM, 33(1):151–178.

Emerson, E. A. and Jutla, C. S. (1988).
The complexity of tree automata and logics of programs.
In SFCS ’88: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 328–337,
Washington, DC, USA. IEEE Computer Society.

Emerson, E. A. and Jutla, C. S. (1999).
The complexity of tree automata and logics of programs.
SIAM J. Comput., 29:132–158.

Emerson, E. A. and Lei, C.-L. (1987).
Modalities for Model Checking: Branching Time Logic Strikes Back.
Science of Computer Programming, 8(3):275–306.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995).
Reasoning about Knowledge.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

MIT Press: Cambridge, MA.

Farwer, B. and Dennis, L. A. (2007).
Translating into an Intermediate Agent Layer: A Prototype in Maude.
In Proc. International Workshop on Concurrency, Specification and Programming (CS&P), Lagow, Poland.

Fisher, M. (2011).
An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley.

Fisher, M. and Hepple, A. (2009).
Executing Logical Agent Specifications.
In Bordini, R. H., Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors, Multi-agent Programming: Languages,
Tools and Applications, pages 1–27. Springer.

Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1995).
Simple On-the-fly Automatic Verification of Linear Temporal Logic.
In Proc. 15th Workshop on Protocol Specification Testing and Verification (PSTV), pages 3–18. Chapman & Hall.

Giordano, L., Martelli, A., and Schwind, C. (2007).
Specifying and Verifying Interaction Protocols in a Temporal Action Logic.
Journal of Applied Logic, 5(2):214–234.

Havelund, K. and Rosu, G. (2001).
Monitoring Programs Using Rewriting.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

In Proc. 16th IEEE International Conference on Automated Software Engineering (ASE), pages 135–143. IEEE
Computer Society Press.

Holzmann, G. J. (2003).
The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley.

Holzmann, G. J. and Smith, M. H. (1999a).
A Practical Method for Verifying Event-Driven Software.
In Proc. International Conference on Software Engineering (ICSE), pages 597–607.

Holzmann, G. J. and Smith, M. H. (1999b).
Software Model Checking.
In Proc. Formal Description Techniques (FORTE), pages 481–497.

Immerman, N. (1981).
Number of quantifiers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):384 – 406.

Jones, N. D. (1975).
Space-bounded reducibility among combinatorial problems.
Journal of Computer and System Sciences, 11(1):68 – 85.

Jones, N. D. (1977).
Corrigendum: Space-bounded reducibility among combinatorial problems.
J. Comput. Syst. Sci., 15(2):241.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

Jongmans, S.-S. T. Q., Hindriks, K. V., and van Riemsdijk, M. B. (2010).
Model Checking Agent Programs by Using the Program Interpreter.
In Proc. 11th International Workshop on Computational Logic in Multi-agent Systems (CLIMA), volume 6245 of
LNCS, pages 219–237. Springer.

Kakas, A. C., Kowalski, R. A., and Toni, F. (1993).
Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719–770.

Kowalski, R. (1979).
Algorithm=Logic+Control.
Communications of the ACM, 22(7):424–436.

Lichtenstein, O. and Pnueli, A. (1985).
Checking that finite state concurrent programs satisfy their linear specification.
In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 97–107, New York, NY, USA. ACM.

Maidl, M. (2000).
The common fragment of ctl and ltl.
In FOCS, pages 643–652. IEEE Computer Society.

Manna, Z. and Waldinger, R. J. (1971).
Toward Automatic Program Synthesis.
Communications of the ACM, 14(3):151–165.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

McMillan, K. L. (1993).
Symbolic Model Checking.
Kluwer Academic Publishers.

Mili, A., Desharnais, J., and Gagné, J. R. (1986).
Formal Models of Stepwise Refinements of Programs.
ACM Computer Surveys, 18(3):231–276.

Orgun, M. A. and Wadge, W. W. (1992).
Towards a Unified Theory of Intensional Logic Programming.
Journal of Logic Programming, 13(1–4):413–440.

Owre, S., Rushby, J., Shankar, N., and Stringer-Calvert, D. (1998).
PVS: An Experience Report.
In Hutter, D., Stephan, W., Traverso, P., and Ullman, M., editors, Applied Formal Methods, volume 1641 of Lecture
Notes in Computer Science, pages 338–345. Springer.

Parikh, R. (1979).
Propositional Dynamic Logics of Programs: A Survey.
Lecture Notes in Computer Science, 125:102–144.

Paulson, L. C. (1994).
A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science.
Springer.

Pnueli, A. (1977).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

The Temporal Logic of Programs.
In Proceedings of FOCS, pages 46–57.

Pnueli, A. and Rosner, R. (1989a).
On the synthesis of a reactive module.
In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 179–190, New York, NY, USA. ACM.

Pnueli, A. and Rosner, R. (1989b).
On the Synthesis of an Asynchronous Reactive Module.
In Proc. 16th International Colloquium on Automata, Languages and Programming (ICALP), volume 372 of LNCS,
pages 652–671. Springer.

Prasad, M. R., Biere, A., and Gupta, A. (2005).
A Survey of Recent Advances in SAT-based Formal Verification.
International Journal on Software Tools for Technology Transfer, 7(2):156–173.

Rabin, M. (1970).
Weakly definable relations and special automata.
Mathematical Logic and Foundations of Set Theory, pages 1–23.

Sadri, F. and Toni, F. (2006).
A Formal Analysis of KGP Agents.
In Proc. European Conference on Logics in Artificial Intelligence (JELIA), volume 4160 of Lecture Notes in Artificial
Intelligence, pages 413–425, Heidelberg, Germany. Springer-Verlag.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

Safra, S. (1988).
On the complexity of omega -automata.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 319–327, Washington,
DC, USA. IEEE Computer Society.

Schnoebelen, P. (2003).
The complexity of temporal model checking.
In Advances in Modal Logics, Proceedings of AiML 2002. World Scientific.

Schobbens, P. Y. (2004).
Alternating-Time Logic with Imperfect Recall.
Electronic Notes in Theoretical Computer Science, 85(2).

Shapiro, S., Lespérance, Y., and Levesque, H. (2002).
The Cognitive Agents Specification Language and Verification Environment for Multiagent Systems.
In Proc. 1st International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 19–26,
New York, NY, USA. ACM Press.

Sistla, A. P. and Clarke, E. M. (1985).
The complexity of propositional linear temporal logics.
J. ACM, 32(3):733–749.

Sistla, A. P., Vardi, M., and Wolper, P. (1987).
The Complementation Problem for Büchi Automata with Applications to Temporal Logic.
Theoretical Computer Science, 49:217–237.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

van Riemsdijk, B., de Boer, F. S., Dastani, M., and Meyer, J.-J. C. (2006).
Prototyping 3APL in the Maude Term Rewriting Language.
In Proc. 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
1279–1281. ACM.

Vardi, M. Y. and Wolper, P. (1984).
Automata theoretic techniques for modal logics of programs: (extended abstract).
In STOC ’84: Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 446–456, New
York, NY, USA. ACM.

Vardi, M. Y. and Wolper, P. (1986).
An automata-theoretic approach to automatic program verification (preliminary report).
In Proceedings of the First Annual IEEE Symposium on Logic in Computer Science (LICS 1986), pages 332–344. IEEE
Computer Society Press.

Vardi, M. Y. and Wolper, P. (1994).
Reasoning About Infinite Computations.
Information and Computation, 115(1):1–37.

Visser, W., Havelund, K., Brat, G. P., Park, S., and Lerda, F. (2003).
Model Checking Programs.
Automated Software Engineering, 10(2):203–232.

Webster, M., Fisher, M., Cameron, N., and Jump, M. (2011).
Model Checking and the Certification of Autonomous Unmanned Aircraft Systems.
In Proc. 30th International Conference on Computer Safety, Reliability and Security (SAFECOMP).

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

10 References

Winikoff, M. (2007).
Implementing Commitment-Based Interactions.
In Proc. 6th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1–8,
New York, NY, USA. ACM.

Wooldridge, M., Fisher, M., Huget, M.-P., and Parsons, S. (2006).
Model Checking for Multiagent Systems: The MABLE Language and its Applications.
International Journal of Artificial Intelligence Tools, 15(2):195–225.

J. Dix, M. Fisher · Chapter 14: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 328

	Introduction
	Agent Specification
	From Specification to Implementation
	Formal Verification
	Deductive Verification of Agents
	Algorithmic Verification of Models
	Algorithmic Verification of Programs
	Appendix: Automata Theory
	References

