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Constraints

Pervade our everyday lives

Are usually perceived as elements that limit solutions to the
problems we face
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Constraints

From a computational point of view, they:

Reduce the space of possible solutions

Encode knowledge about the problem at hand

Are key components for efficiently solving hard problems
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Constraint Processing

Many different disciplines deal with hard computational problems that
can be made tractable by carefully considering the constraints that

define the structure of the problem.

Planning Operational Automated Reasoning Computer
Scheduling Research Decision Theory Vision
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Constraint Processing in Multi-Agent Systems

Focus on how constraint processing can be used to address
optimization problems in Multi-Agent Systems (MAS) where:

A set of agents must come to some agreement, typically via some
form of negotiation, about which action each agent should take in

order to jointly obtain the best solution for the whole system.

A1 A2 A3

M1 M2

A2
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Distributed Constraint Optimization Problems (DCOPs)

We will consider Distributed Constraint Optimization Problems (DCOP)
where:

Each agent negotiates locally with just a subset of other agents
(usually called neighbors) that are those that can directly influence

his/her behavior.

M1
M2

A2

A1 A3
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Distributed Constraint Optimization Problems (DCOPs)

After reading this chapter, you will understand:

The mathematical formulation of a DCOP
The main exact solution techniques for DCOPs

Key differences, benefits and limitations

The main approximate solution techniques for DCOPs
Key differences, benefits and limitations

The quality guarantees these approach provide:
Types of quality guarantees
Frameworks and techniques
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Constraint Networks

A constraint network N is formally defined as a tuple 〈X ,D,C〉 where:

X = {x1, . . . ,xn} is a set of discrete variables;

D = {D1, . . . ,Dn} is a set of variable domains, which enumerate
all possible values of the corresponding variables; and
C = {C1, . . . ,Cm} is a set of constraints; where a constraint Ci is
defined on a subset of variables Si ⊆ X which comprise the
scope of the constraint

r = |Si | is the arity of the constraint
Two types: hard or soft
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Hard constraints

A hard constraint Ch
i is a relation Ri that enumerates all the valid

joint assignments of all variables in the scope of the constraint.

Ri ⊆ Di1× . . .×Dir

Ri xj xk

0 1
1 0
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Soft constraints

A soft constraint Cs
i is a function Fi that maps every possible joint

assignment of all variables in the scope to a real value.

Fi : Di1× . . .×Dir →ℜ

Fi xj xk

2 0 0
0 0 1
0 1 0
1 1 1
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Binary Constraint Networks

Binary constraint networks are those where:

Each constraint (soft or hard) is defined
over two variables.

Every constraint network can be mapped to
a binary constraint network

requires the addition of variables and
constraints
may add complexity to the model

They can be represented by a constraint
graph

x1

x2 x3

x4

F 1,
2

F
1,3

F 2,
4

F 1,
4
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Different objectives, different problems

Constraint Satisfaction Problem (CSP)

Objective: find an assignment for all the variables in the network
that satisfies all constraints.

Constraint Optimization Problem (COP)

Objective: find an assignment for all the variables in the network
that satisfies all constraints and optimizes a global function.

Global function = aggregation (typically sum) of local functions.
F(x) = ∑i Fi(xi)
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Distributed Constraint Reasoning

When operating in a
decentralized context:

a set of agents control
variables

agents interact to find a
solution to the constraint
network

A1

A2

A3

A4
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Distributed Constraint Reasoning

Two types of decentralized problems:

distributed CSP (DCSP)

distributed COP (DCOP)

Here, we focus on DCOPs.
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Distributed Constraint Optimization Problem (DCOP)

A DCOP consists of a constraint network N = 〈X ,D,C〉 and a set of
agents A = {A1, . . . ,Ak} where each agent:

controls a subset of the variables Xi ⊆ X

is only aware of constraints that involve variable it controls

communicates only with its neighbours
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Distributed Constraint Optimization Problem (DCOP)

Agents are assumed to be fully cooperative
Goal: find the assignment that optimizes the global function, not
their local local utilities.

Solving a COP is NP-Hard and DCOP is as hard as COP.
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Motivation

Why distribute?

Privacy

Robustness

Scalability
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Target Tracking

Real World Applications

Many standard benchmark problems in computer science can be
modeled using the DCOP framework:

graph coloring

As can many real world applications:

human-agent organizations (e.g. meeting scheduling)

sensor networks and robotics (e.g. target tracking)
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Graph coloring
Meeting Scheduling
Target Tracking

Graph coloring

Popular benchmark

Simple formulation
Complexity controlled with few parameters:

Number of available colors
Number of nodes
Density (#nodes/#constraints)

Many versions of the problem:
CSP, MaxCSP, COP
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Graph coloring
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Target Tracking

Graph coloring - CSP

Nodes can take k colors
Any two adjacent nodes should have different colors

If it happens this is a conflict

Yes! No!
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Graph coloring - Max-CSP

Minimize the number of conflicts

0 -1
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Graph coloring - COP

Different weights to violated constraints

Preferences for different colors

0 -2
-1

-3

-1

-2
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Graph coloring
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Target Tracking

Graph coloring - DCOP

Each node:
controlled by one agent

Each agent:
Preferences for different colors
Communicates with its direct neighbours in the graph

-1

-3

-1

-2
A1

A2

A3

A4

A1 and A2 exchange
preferences and conflicts

A3 and A4 do not
communicate
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Meeting Scheduling

Motivation:

Privacy

Robustness

Scalability
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Meeting Scheduling

In large organizations many people, possibly working in different
departments, are involved in a number of work meetings.
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Meeting Scheduling

People might have various private preferences on meeting start times

Better after 12:00am
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Meeting Scheduling

Two meetings that share a participant cannot overlap

Window: 15:00-18:00
Duration: 2h

Window: 15:00-17:00
Duration: 1h
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DCOP formalization for the meeting scheduling problem

A set of agents representing participants

A set of variables representing meeting starting times according
to a participant.
Hard Constraints:

Starting meeting times across different agents are equal
Meetings for the same agent are non-overlapping.

Soft Constraints:
Represent agent preferences on meeting starting times.

Objective: find a valid schedule for the meeting while maximizing the
sum of individuals’ preferences.
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Target Tracking

Motivation:

Privacy

Robustness

Scalability
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Target Tracking

A set of sensors tracking a set of targets in order to provide an
accurate estimate of their positions.

T1

T2

T4

T3

Crucial for surveillance and monitoring applications.
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Target Tracking

Sensors can have different sensing modalities that impact on the
accuracy of the estimation of the targets’ positions.

T1

T4

T3

T2

MODES

MODES

MODES

MODES
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Target Tracking

Collaboration among sensors is crucial to improve system
performance

T1

T2

T4

T3

Chapter 12: Distributed Constraint Handling and Optimization



Introduction
Distributed Constraint Reasoning

Applications and Exemplar Problems
Complete algorithms for DCOPs

Approximated Algorithms for DCOPs
Conclusions

Graph coloring
Meeting Scheduling
Target Tracking

DCOP formalization for the target tracking problem

Agents represent sensors

Variables encode the different sensing modalities of each sensor
Constraints

relate to a specific target
represent how sensor modalities impacts on the tracking
performance

Objective:
Maximize coverage of the environment
Provide accurate estimations of potentially dangerous targets
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Complete Algorithms

U Always find an optimal solution

D Exhibit an exponentially increasing coordination overhead

D Very limited scalability on general problems.
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Complete Algorithms

Completely decentralised
Search-based.

Synchronous: SyncBB, AND/OR search
Asynchronous: ADOPT, NCBB and AFB.

Dynamic programming.

Partially decentralised
OptAPO

Next, we focus on completely decentralised algorithms
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Decentralised Complete Algorithms

Search-based

Uses distributed search

Exchange individual values

Small messages but
. . . exponentially many

Representative: ADOPT [Modi
et al., 2005]

Dynamic programming

Uses distributed inference

Exchange constraints

Few messages but
. . . exponentially large

Representative: DPOP [Petcu
and Faltings, 2005]
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ADOPT

ADOPT (Asynchronous Distributed OPTimization) [Modi et al., 2005]:

Distributed backtrack search using a best-first strategy

Best value based on local information:

Lower/upper bound estimates of each possible value of its
variable

Backtrack thresholds used to speed up the search of previously
explored solutions.

Termination conditions that check if the bound interval is less than
a given valid error bound (0 if optimal)
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Search Based: ADOPT
Dynamic Programming DPOP

ADOPT by example

4 variables (4 agents): x1,x2,x3,x4 with D = {0,1}

x1

x2 x3

x4

F 1,
2

F
1,3

F 2,
4 F 1,

4

4 identical cost functions

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

Goal: find a variable assignment with minimal cost

Solution: x1 = 1, x2 = 0, x3 = 0 and x4 = 1
giving total cost 1.
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Search Based: ADOPT
Dynamic Programming DPOP

DFS arrangement

Before executing ADOPT, agents must be arranged in a depth
first search (DFS) tree.
DFS trees have been frequently used in optimization because
they have two interesting properties:

Agents in different branches of the tree do not share any
constraints;
Every constraint network admits a DFS tree.
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ADOPT by example

x1

x2 x3

x4

F 1,
2

F
1,3

F 2,
4 F 1,

4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

→

DFS arrangement

A1 (root)

A2 A3

A4

←
ch

ild
,p

ar
en

t →

←
parent,child

→

←
ch

ild
,p

ar
en

t →
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Cost functions

The local cost function for an agent Ai (δ (xi)) is the sum of the values
of constraints involving only higher neighbors in the DFS.
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Search Based: ADOPT
Dynamic Programming DPOP

ADOPT by example

A1 δ (x1) = 0

A2δ (x1,x2) = F1,2(x1,x2) A3 δ (x1,x3) = F1,3(x1,x3)

A4

δ (x1,x2,x4) = F1,4(x1,x4)+F2,4(x2,x4)

Chapter 12: Distributed Constraint Handling and Optimization
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Search Based: ADOPT
Dynamic Programming DPOP

Initialization

Each agent initially chooses a random value for their variables and
initialize the lower and upper bounds to zero and infinity respectively.

A1x1 = 0,LB = 0,UB = ∞

A2x2 = 0,LB = 0,UB = ∞ A3 x3 = 0,LB = 0,UB = ∞

A4x4 = 0,LB = 0,UB = ∞
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ADOPT by example

Value messages are sent by an agent to all its neighbors that are
lower in the DFS tree

A1x1 = 0

A2x2 = 0 A3 x3 = 0

A4x4 = 0

x 1
=

0
←−
−−

x
1
=

0

−−−→

x 2
=

0
←
−−
− x 1
=

0
←
−−
−

A1 sends three value
message to A2, A3 and A4

informing them that its
current value is 0.
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ADOPT by example

Current Context: a partial variable assignment maintained by each
agent that records the assignment of all higher neighbours in the DFS.

A1

A2c2 : {x1 = 0} A3

c3 : {x1 = 0}

A4

c4 : {x1 = 0,x2 = 0}

Updated by each VALUE
message

If current context is not
compatible with some child
context, the latter is re-initialized
(also the child bound)
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ADOPT by example

Each agent Ai sends a cost message to its parent Ap

A1

A2 A3

A4

[0
,∞

,c
2
] [0,0,c

3 ]

[0
,0
,c

4
]

Each cost message reports:

The minimum lower bound (LB)

The maximum upper bound (UB)

The context (ci )

[LB,UP,ci ]
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Lower bound computation

Each agent evaluates for each possible value of its variable:

its local cost function with respect to the current context

adding all the compatible lower bound messages received from
children.

Analogous computation for upper bounds
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ADOPT by example

Consider the lower bound in the cost message sent by A4:

A1

A2 A3

A4

[0
,0
,c

4
]

Recall that A4 local cost function is:
δ (x1,x2,x4) = F1,4(x1,x4)+F2,4(x2,x4)

Restricted to the current context
c4 = {(x1 = 0,x2 = 0)}:
λ (0,0,x4) = F1,4(0,x4)+F2,4(0,x4).

For x4 = 0:
λ (0,0,0) = F1,4(0,0)+F2,4(0,0) = 2+2 = 4.

For x4 = 1:
λ (0,0,1) = F1,4(0,1)+F2,4(0,1) = 0+0 = 0.

Then the minimum lower bound across variable
values is LB = 0.
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ADOPT by example

Each agent asynchronously chooses the value of its variable that
minimizes its lower bound.

A1

A2x2 = 0→ 1 A3

A4

[0
,2
,c

2
]

x 2
=

1

A2 computes for each possible value of its
variable its local function restricted to the
current context c2 = {(x1 = 0)}
(λ (0,x2) = F1,2(0,x2)) and adding lower
bound message from A4 (lb).

For x2 = 0: LB(x2 = 0) = λ (0,x2 =
0)+ lb(x2 = 0) = 2+0 = 2.

For x2 = 1: LB(x2 = 1) = λ (0,x2 =
1)+0 = 0+0 = 0.

A2 changes its value to x2 = 1 with LB = 0.
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Backtrack thresholds

The search strategy is based on lower bounds

Problem

Values abandoned before proven to be
suboptimal

Lower/upper bounds only stored for the
current context

Solution

Backtrack thresholds: used to speed up
the search of previously explored
solutions.
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ADOPT by example

A1

x1 = 0→ 1→ 0

A2 A3

A4

A1 changes its value and the context with
x1 = 0 is visited again.

Reconstructing from scratch is inefficient

Remembering solutions is expensive
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Backtrack thresholds

Solution: Backtrack thresholds

Lower bound previously determined by children

Polynomial space

Control backtracking to efficiently search

Key point: do not change value until LB(currentvalue)> threshold
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A child agent will not change its variable value so long as cost is less
than the backtrack threshold given to it by its parent.

A1LB(x1 = 0) = 1

A2LB(x2 = 0)> 1
2? A3 LB(x3 = 0)> 1

2?

A4

t(
x 1

=
0)

=
1 2

t(x
1
=

0)
=

12
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Rebalance incorrect threshold

How to correctly subdivide threshold among children?

Parent distributes the accumulated bound among children
Arbitrarily/Using some heuristics

Correct subdivision as feedback is received from children
LB < t(CONTEXT )
t(CONTEXT ) = ∑Ci

t(CONTEXT )+δ
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Backtrack Threshold Computation

A1

A2 A3

A4

(2
)

t(
x 1

=
0)

=
1

(1
) L

B
=

1

(2)
12 t(x

1
=

0)
=

0

When A1 receives a new lower bound
from A2 rebalances thresholds

A1 resends threshold messages to A2

and A3
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ADOPT extensions

BnB-ADOPT [Yeoh et al., 2008] reduces computation time by
using depth-first search with branch and bound strategy

[Ali et al., 2005] suggest the use of preprocessing techniques for
guiding ADOPT search and show that this can result in a
consistent increase in performance.
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DPOP

DPOP (Dynamic Programming Optimization Protocol) [Petcu and
Faltings, 2005]:

Based on the dynamic programming paradigm.

Special case of Bucket Tree Elimination Algorithm (BTE)
[Dechter, 2003].
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DPOP by example

x1

x2 x3

x4

Objective: find assignment
with maximal value

F 1,
2

F
1,3

F 2,
4

F2,3F 1,
4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

=>

DFS arrangement

x1

x2

x3x4

←
P

2 ,child
→

←
ch

ild
,P

4
→

←
P

3 ,child
→

←
ps

eu
do

ch
ild
,P

P 4
→

←
P

P
3 ,pseudochild

→
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DPOP phases

Given a DFS tree structure, DPOP runs in two phases:
Util propagation: agents exchange util messages up the tree.

Aim: aggregate all info so that root agent can choose optimal
value

Value propagation: agents exchange value messages down the
tree.

Aim: propagate info so that all agents can make their choice given
choices of ancestors
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Sepi : set of agents preceding Ai in the pseudo-tree order that are
connected with Ai or with a descendant of Ai .

x1 Sep1 = /0

x2 Sep2 = {x1}

x3 Sep3 = {x1,x2}x4Sep4 = {x1,x2}

←
P

2 ,child
→

←
ch

ild
,P

4
→

←
P

3 ,child
→

←
ps

eu
do

ch
ild
,P

P 4
→
←

P
P

3 ,pseudochild
→
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Util message

The Util message Ui→j that agent Ai sends to its parent Aj can be
computed as:

Ui→j(Sepi) = max
xi

( ⊗
Ak∈Ci

Uk→i ⊗
⊗

Ap∈Pi∪PPi

Fi,p

)

All incoming messages Shared constraints withSize exponential
from children parents/pseudoparentsin Sepi

The ⊗ operator is a join operator that sums up functions with different
but overlapping scores consistently.
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Join operator

F2,4 x2 x4

2 0 0
0 0 1
0 1 0
1 1 1

Add
Project

out x4F1,4 x1 x4

2 0 0
0 0 1
0 1 0
1 1 1

F1,4⊗F2,4

x1 x2 x4

4 0 0 0
0 0 0 1
2 0 1 0
1 0 1 1
2 1 0 0
2 1 0 1
0 1 1 0
2 1 1 1

max{x4}(F1,4⊗F2,4)

x1 x2 x4

max(4,0)
0 0 0
0 0 1

max(2,1)
0 1 0
0 1 1

max(2,2)
1 0 0
1 0 1

max(0,2)
1 1 0
1 1 1
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Complexity exponential to the largest Sepi .
Largest Sepi = induced width of the DFS tree ordering used.

A1 (root)

A2
max

x2
(U3→2⊗U4→2⊗F1,2)

A3

max
x3

(F1,3⊗F2,3)

A4

1
2 max

x4
(F1,4⊗F2,4)

U
1→

2
←−−−

U 4→
2

−−
−→

U
3→

2

←−−−

U2→1 x1

0 10
1 5

U4→2 x1 x2

4 0 0
2 0 1
2 1 0
2 1 1

U3→2 x1 x2

4 0 0
2 0 1
2 1 0
2 1 1

Sep2

Sep3

Sep4
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Value message

Keeping fixed the value of parent/pseudoparents, finds the value that
maximizes the computed cost function in the util phase:

x∗i = arg max
xi

(
∑

Aj∈Ci

Uj→i(xi ,x
∗
p )+ ∑

Aj∈Pi∪PPi

Fi,j(xi ,x
∗
j )

)

where x∗p =
⋃

Aj∈Pi∪PPi
{x∗j } is the set of optimal values for Ai ’s parent

and pseudoparents received from Ai ’s parent.
Propagates this value through children down the tree:

Vi→j = {xi = x∗i }∪
⋃

xs∈Sepi∩Sepj

{xs = x∗s }
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A1
x∗1 = max

x1
U1→2(x1)

A2
x∗2 = max

x2
(U3→2(x∗1 ,x2)⊗U4→2(x∗1 ,x2)⊗F1,2(x∗1 ,x2))

A3

x∗3 = max
x3

(F1,3(x∗1 ,x3)⊗F2,3(x∗2 ,x3))

A4

x∗4 = max
x4

(F1,4(x∗1 ,x4)⊗F2,4(x∗2 ,x4))

V
1→

2
−−−→

V 2→
4

←−
−−

V
2→

3

−−−→

Chapter 12: Distributed Constraint Handling and Optimization



Introduction
Distributed Constraint Reasoning

Applications and Exemplar Problems
Complete algorithms for DCOPs

Approximated Algorithms for DCOPs
Conclusions

Search Based: ADOPT
Dynamic Programming DPOP

DPOP extensions

MB-DPOP [Petcu and Faltings, 2007] trades-off message size
against the number of messages.

A-DPOP trades-off message size against solution quality [Petcu
and Faltings, 2005(2)].
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Why Approximate Algorithms

“Very often optimality in practical applications is not achievable”

Approximate algorithms

Sacrify optimality in favor of computational and communication
efficiency
Well-suited for large scale distributed applications:

sensor networks
mobile robots
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Centralized Local Greedy approaches

Start from a random assignment for all the variables

Do local moves if the new assignment improves the value (local
gain)

Local: changing the value of a small set of variables (in most
case just one)

The search stops when there is no local move that provides a
positive gain, i.e., when the process reaches a local maximum.
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Distributed Local Greedy approaches

When operating in a decentralized context:
Problem: Out-of-date local knowledge

Assumption that other agents do not change their values
A greedy local move might be harmful/useless

Solution:
Stochasticity on the decision to perform a move (DSA)
Coordination among neighbours on who is the agent that should
move (MGM)
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Distributed Stochastic Algorithm (DSA)

Activation probability to mitigate issues with parallel executions

[S. Fitzpatrick and L. Meetrens, 2003]

Initialize agents with a random assignment and communicate
values to neighbors
Each agent:

Generates a random number and executes only if it is less than
the activation probability
When executing choose a value for the variable such that the local
gain is maximized
Communicate and receive possible variables change to/from
neighbors
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DSA-1: discussion

U Extremely low computation/communication

U Shows an anytime property (not guaranteed)
D Activation probability:

Must be tuned
Domain dependent (no general rule)
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Maximum Gain Message (MGM-1)

Coordination among neighbours to decide which single agent can
perform the move.

[R. T. Maheswaran et al., 2004]

Initialize agents with a random assignment and communicate
values to neighbors
Each agent:

Compute and exchange possible gains
Agent with maximum (positive) gain executes
Communicate and receive possible variables changes to/from
neighbors
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MGM-1: discussion

= More communication than DSA but still linear

= Empirically similar to DSA

U Guaranteed to be anytime

U Does not require any parameter tuning.
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Decentralised greedy approaches

U Very little memory and computation

U Anytime behaviours
D Could result in very bad solutions

local maxima arbitrarily far from optimal

Chapter 12: Distributed Constraint Handling and Optimization



Introduction
Distributed Constraint Reasoning

Applications and Exemplar Problems
Complete algorithms for DCOPs

Approximated Algorithms for DCOPs
Conclusions

Local greedy methods: DSA-1, MGM-1 (Heuristic)
GDL-based approaches: Max-Sum (Heuristic)
Quality guarantees: k-optimality, region optimality, bounded Max-Sum

Outline

1 Introduction

2 Distributed Constraint Reasoning

3 Applications and Exemplar Problems

4 Complete algorithms for DCOPs

5 Approximated Algorithms for DCOPs
Local greedy methods: DSA-1, MGM-1 (Heuristic)
GDL-based approaches: Max-Sum (Heuristic)
Quality guarantees: k-optimality, region optimality, bounded
Max-Sum

6 Conclusions

Chapter 12: Distributed Constraint Handling and Optimization



Introduction
Distributed Constraint Reasoning

Applications and Exemplar Problems
Complete algorithms for DCOPs

Approximated Algorithms for DCOPs
Conclusions

Local greedy methods: DSA-1, MGM-1 (Heuristic)
GDL-based approaches: Max-Sum (Heuristic)
Quality guarantees: k-optimality, region optimality, bounded Max-Sum

GDL Based Approximate Algorithms (GDL)

Generalized Distributive Law (GDL)

Unifying framework for
inference in Graphical Models

Builds on basic mathematical
properties of semi-rings

Widely used in information
theory, statistical physics,
graphical models
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GDL Based Approximate Algorithms (GDL)

Max-Sum [A. Farinelli et al., 2008]

DCOP-Settings: maximize the
social welfare

GDL approximate iterative
message passing algorithm
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The Max-Sum algorithm

Agents iteratively exchange messages to build a local function that
depends only on the variables they control

x1

x2 x3

x4

F 1,
2

F
1,3

F 2,
4

F2,3F 1,
4

=>

A1

A2 A3

A4
m 2→

1
(x

1
)

−−
−−
−−
→

←−
−−
−−
−

m 1→
2
(x

2
)

m
1→

3 (x
3 )

−−−−−−→

←−−−−−−

m
3→

1 (x
1 )

m 4→
2
(x

2
)

−−
−−
−−
→

←−
−−
−−
−

m 2→
4
(x

4
)

m2→3(x3)−−−−−−→
←−−−−−−
m3→2(x2)

m 4→
1
(x

1
)

−−
−−
−−
→

←−
−−
−−
−

m 1→
4
(x

4
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Max-Sum messages

At each execution step, each agent Ai sends to each of its neighbors
Aj the message:

Shared constraint with Aj All incoming messages except from Aj

mi→j(xj) = αij +maxxi

(
Fij(xi ,xj)+ ∑

k∈N(i)\j
mk→i(xi)

)

where:

αij is a normalization constant added to all components of the
message so that ∑xj

mi→j(xj) = 0

N(i) is the set of indices for variables that are connected to xi
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Max-Sum by example

A1

A2 A3

A4

←−
−−
−−
−

m
1→

2
(x

2
)

m 4→
2
(x

2
)

−−
−−
−−
→

←−−−−−−
m3→2(x2)

m1→2(x2) = maxx1(F1,2(x1,x2)+m3→1(x1)+m4→1(x1))

Shared constraint with A2 All incoming messages except from A2
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Max-Sum assignments

At each iteration, each agent Ai :

computes its local function as:

All incoming messages

zi(xi) = ∑
k∈N(i)

mk→i(xi)

sets its assignment as the value that maximizes its local function:

x̃i = arg max
xi

zi(xi)
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Max-Sum by example

A1

A2 A3

A4

←−
−−
−−
−

m
1→

2
(x

2
)

m 4→
2
(x

2
)

−−
−−
−−
→

←−−−−−−
m3→2(x2)

z1(x1) = m2→1(x1)+m3→1(x1)+m4→1(x1)

All incoming messages: from A4, A3 and A1
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Max-Sum on acyclic graphs

Optimal on acyclic graphs
Different branches are independent
z functions provide correct estimations of
agents contributions to the global problem

Convergence guaranteed in a polynomial
number of cycles

A1

A2 A3

A4
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Max-Sum on cyclic graphs

On cyclic graphs, limited theoretical results:

Lack of convergence guarantees

When converges, it does converge to a neighborhood maximum

Neighborhood maximum: guaranteed to be greater than all other
maxima within a particular region of the search space
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Quality guarantees

So far, algorithms presented (DSA-1, MGM-1, Max-Sum) do not
provide any guarantee on the quality of their solutions

Quality highly dependent on many factors which cannot always
be properly assessed before deploying the system.

Particularly adverse behaviour on specific pathological instances.

Challenge:

Quality assessment on approximate algorithms
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Quality guarantees for approx. techniques

Key area of research

Address trade-off between guarantees and computational effort

Particularly important for:

Dynamic settings
Severe constrained resources (e.g. embedded devices)
Safety critical applications (e.g. search and rescue)

Chapter 12: Distributed Constraint Handling and Optimization



Introduction
Distributed Constraint Reasoning

Applications and Exemplar Problems
Complete algorithms for DCOPs

Approximated Algorithms for DCOPs
Conclusions

Local greedy methods: DSA-1, MGM-1 (Heuristic)
GDL-based approaches: Max-Sum (Heuristic)
Quality guarantees: k-optimality, region optimality, bounded Max-Sum

Quality guarantees categories

Off-line
Prior running the algorithm
Not tied to specific problem
instances

On-line
After running the algorithm
On the particular problem
instance

On-line
Bounded Max-Sum

Off-line
k-size optimality

t-distance optimality

region optimality

A
cc
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ac

y

Generality
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Quality guarantees categories

Off-line
Prior running the algorithm
Not tied to specific problem
instances

On-line
After running the algorithm
On the particular problem
instance

On-line
Bounded Max-Sum

Off-line
k-size optimality

t-distance optimality

region optimality
A

cc
ur

ac
y

Generality

Enable trade-offs at design time
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k-size optimality framework

Gives a bound on the solution quality of any k-optimal solution
[J.P.Pearce and M.Tambe, 2007]

The k-optimal solution is a local maximum in a region
characterized by size

Its value cannot be improved by changing the assignment of k or
fewer agents
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k-optimality by example

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

F 1,
2

F
1,3

F 2,
4 F 1,

4

Goal: maximize

x̂ = {x1 = 1,x2 = 1,x3 = 1,x4 = 1}

with value

F(x̂) = F1,2 +F1,3 +F1,4 +F2,4

= 1+1+1+1 = 4

Optimal? No

x∗ = {x1 = x2 = x3 = x4 = 0}

with value F(x∗) = 8.
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k-optimality by example

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

F 1,
2

F
1,3

F 2,
4 F 1,

4

Goal: maximize.

x̂ = {x1 = 1,x2 = 1,x3 = 1,x4 = 1}

with value

F(x̂) = F1,2 +F1,3 +F1,4 +F2,4

= 1+1+1+1 = 4

2-size-Optimal? Yes

If only two agents can change their
variables’ values there is no solution

that obtains higher value.
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k-optimality by example

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

F 1,
2

F
1,3

F 2,
4 F 1,

4

Goal: maximize.

x̂ = {x1 = 1,x2 = 1,x3 = 1,x4 = 1}

F(x̂) = F1,2 +F1,3 +F1,4 +F2,4

= 1+1+1+1 = 4

3-size-optimal? No, a better solution if
three agents change their values:
x̂′ = {x1 = 0,x2 = 0,x3 = 1,x4 = 0}

F(x̂) = F1,2 +F1,3 +F1,4 +F2,4

= 2+0+2+2 = 6≥ 4
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K-optimality guarantees

For any DCOP with non-negative values [Pearce and M.Tambe, 2007]

F(x̂)≥ (n−m
k−m)

(n
k)−(

n−m
k )

F(x∗)

α

Number of agents Number of constraints

k-optimal solution

For binary constraints (m = 2):

F(x̂)≥ k−1
2n−k−1F(x∗)

Number of agents
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k-optimality by example

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

F 1,
2

F
1,3

F 2,
4 F 1,

4

Goal: maximize.

2-size optimal solution:

x̂ = {x1 = 1,x2 = 1,x3 = 1,x4 = 1}

For k = 2, n = 4

F(x̂) = 4≥ 2−1
2 ·4−2−1

=
1
5

F(x∗)
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k-optimality guarantees

Apply to:

any constraint graph with n agents
independently of

graph structure
reward structure

Very strong and general result

Depend on:

arity of constraints

value of k

number of agents

Very low guarantees on
large-scale systems
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k-optimality by example

x1

x2 x3

x4
Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

F 1,
2

F
1,3

F 3,4

F 2
,4

F 1,
4

Goal: maximize.

After adding a constraint between x3 and x4

The value of any 2-size optimal is still
guaranteed to be greater than 1

5 of the value
of the optimal.
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k-optimality guarantees

Apply to:

any constraint graph with n agents
independently of

graph structure
reward structure

Very strong and general result

Depend on:

arity of constraints

value of k

number of agents

Very low guarantees on
large-scale systems
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k-optimality algorithms

k-optimality guarantees are independent of the algorithm employed to
find k-optimal solutions

How do agents search for a k-size optimal solution?

A group of k agents coordinate their choice to find a solution
optimal for the group.

Hill climbing algorithms (e.g. DSA-1, MGM-1) are able to find a
1-size optimal solution but no guarantee for k ≤ 1.
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k-optimality algorithms

Need algorithms for computing k-optimal solutions:

k = 2 variants of MGM and DSA [R. T. Maheswaran et al., 2004]

DALO finds k-size optimal solutions for arbitrary k [C. Kiekintveld
et al., 2010]

The higher k the more complex the computation (exponential)
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Region optimality: Arbitrary region criteria

Size is only one possible criteria to define optimality of a solution.
Other work explored other criteria:

t-distance: based on the distance between nodes in the graph [C.
Kiekintveld et al., 2010].
size-bounded-distance: based on the distance between nodes in
the graph but bounded on their size [M. Vinyals et al., 2011].

The region optimality framework allows guarantees for region optimal
defined with any criteria [M. Vinyals et al., 2011].
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Max-Sum and region optimality

Upon convergence Max-Sum is optimal on SLT regions [Y. Weiss
and W. T. Freeman, 2001]

Single Loops and Trees (SLT): all groups of agents whose vertex
induced subgraph contains at most one cycle.

Region optimality defines bounds for Max-Sum assignments [M.
Vinyals et al., 2010].

Any Max-Sum solution on convergence is 3-size optimal
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k-optimality guarantees

Apply to:

any constraint graph with n agents
independently of

graph structure
reward structure

Very strong and general result

Depend on:

arity of constraints

value of k

number of agents

Very low guarantees on
large-scale systems

Solution: exploit a priori knowledge of the problem
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Exploiting a priori knowledge on graph structure

Exploit a priori knowledge of the graph structure

k-size optimality guarantees:

valid for any constraint network.

result of a worst case analysis on a complete graph.
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Exploiting a priori knowledge on graph structure

E.g., for a ring topology, where each agent has only two constraints:

F(x̂)≥ k−1
k +1

F(x∗)

Apply to:

any ring topology graph
independently of

graph structure
reward structure

Less strong and general result

Depend on:

arity of constraints

value of k

number of agents

High guarantees on
large-scale systems
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Exploiting a priori knowledge on reward structure

Exploit a priori knowledge on reward structure

Guarantees can be improved by knowing the ratio between the
minimum to the maximum reward [E. Bowring et al., 2008].
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Quality guarantees categories

"The more the knowledge about a problem, the tighter the quality
guarantees”

Off-line
Prior running the algorithm
Not tied to specific problem
instances

On-line
After running the algorithm
On the particular problem
instance

On-line
Bounded Max-Sum

Off-line
k-size optimality

t-distance optimality

region optimality

A
cc

ur
ac

y

Generality

On-line guarantees are usually much tighter than off-line ones
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Bounded Max-Sum (BMS)

Bounded Max-Sum (BMS) [A. Rogers et al., 2011]

remove cycles in the original constraint network by simply
ignoring dependencies among agents.
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Bounded Max-Sum (BMS)

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

Gi,j xi xj

4 0 0
3 0 1
1 1 0
2 1 1F 1,

2

F
1,3

G2,3

F 2,
4

G
1,

4

⇒

(1) Maximum Weight
Spanning Tree

x1

x2 x3

x4

F 1,
2

Gm
1

F
1,3

G2,3

F 2,
4

Gm
2

G 1,
4

⇐
(3) Compute BoundF(x∗)≤ ρF(x̃)

⇓
(2) Run Max-Sum

x̃ = (x1 = 0,x2 = 1,x3 = 0,x4 = 0)
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Computing edge weights

Edge weight: maximum possible
impact of removing a constraint:

wij = min{w ′ij ,w ′′ij }

w ′14 = max
x4

[max
x1

G14−min
x1

G14] = 3

w ′′14 = max
x1

[max
x4

G14−min
x4

G14] = 1

w14 = min(3,1) = 1

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

Gi,j xi xj

4 0 0
3 0 1
1 1 0
2 1 1

F 1,
2

2

F
1,32

G2,3

1

F 2,
4

2

G
1,

4
1
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Computing the bound

After running max-sum, the bound is
computed as:

ρ = F m(x̃)+W
F(x̃)

tree-structured
constraint network

original

constraint network

where:

W is the sum of the weights of the
removed constraints.

x̃ is the BMS assignment over the
tree-structured constraint network

x1

x2 x3

x4

Fi,j xi xj

2 0 0
0 0 1
0 1 0
1 1 1

Gi,j xi xj

4 0 0
3 0 1
1 1 0
2 1 1

W = w14 +w23 = 2

F 1,
2

2

F
1,32

G2,3

1

F 2,
4

2

G
1,

4
1
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Constraint processing
exploit problem structure to solve hard problems efficiently

DCOP framework
applies constraint processing to solve decision making problems
in Multi-Agent Systems
increasingly being applied within real world problems.
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