
Chapter 8:

Computational Coalition

Formation

Edith Elkind
(Nanyang Technological University, Singapore)

Talal Rahwan, Nicholas R. Jennings

(University of Southampton, UK)

Lecture Overview

• Part 1: Coalitional Game Theory

– how do selfish agents form teams
in order to work together

• Part 2: Coalition Structure Generation

– how can a benevolent center split agents into
teams in the most efficient manner

2

Part 1 (Coalitional Game Theory):

Overview

• Introduction

• Definitions

• Solution concepts

• Representations
and computational issues

3

A Point of Reference:

Non-Cooperative Games

• You are probably all familiar with
 non-cooperative games...

• A non-cooperative game is defined by
– a set of agents (players) N = {1,, n}

– for each agent i  N, a set of actions Si

– for each agent i  N, a utility function ui ,
 ui: S1 x x Sn → R

• Observe that an agent’s utility depends not just
on her action, but on actions of other agents
– thus, for i finding the best action involves deliberating

about what other will do
4

Example: Prisoner’s Dilemma

• Two agents committed a crime.
• Court does not have enough evidence to convict them

of the crime, but can convict them of a minor offence
(1 year in prison each)

• If one suspect confesses (acts as an informer), he walks
free, and the other suspect gets 4 years

• If both confess, each gets 3 years
• Agents have no way of communicating or making

binding agreements
5

Prisoner’s Dilemma:

Matrix Representation

(-1,-1) (-4, 0)

(0, -4) (-3, -3)

quiet confess

quiet

confess

• Interpretation: the pair (x, y) at the
intersection of row i and column j means
that the row player gets x
and the column player gets y

P2
P1

6

Prisoners’ Dilemma:

the Rational Outcome

(-1,-1) (-4, 0)

(0, -4) (-3, -3)

• P1’s reasoning:
– if P2 stays quiet,

I should confess

– if P2 confesses,
I should confess, too

• P2 reasons in the same way

• Result: both confess and get 3 years in prison.

• However, if they chose to cooperate and stay
quiet, they could get away with 1 year each.

• So why do not they cooperate?

Q C

Q

C

P1
P2

7

Assumptions in Non-Cooperative

Games

• Cooperation does not occur in prisoners’
dilemma, because players cannot make
binding agreements

• But what if binding agreements are possible?

• This is exactly the class of scenarios
studied by cooperative game theory

8

Cooperative Games

• Cooperative games model scenarios, where
– agents can benefit by cooperating
– binding agreements are possible

• In cooperative games, actions are taken by
groups of agents

Transferable utility games:
payoffs are given to the
group and then divided
among its members

Non-transferable utility
games: group actions
result in payoffs to
individual group members

9

Non-Transferable Utility Games:

Writing Papers

• n researchers working at n different universities
can form groups to write papers on game theory

• each group of researchers can work together;
the composition of a group determines the quality
of the paper they produce

• each author receives a payoff
from his own university
– promotion

– bonus

– teaching load reduction

• Payoffs are non-transferable
10

• n farmers can cooperate to grow fruit
• Each group of farmers can

grow apples or oranges
• a group of size k can grow f(k) tons

of apples and g(k) tons of oranges
– f(), g() are convex functions of k

• Fruit can be sold in the market:
– if there are x tons of apples and y tons of oranges on the

market, the market prices for apples and oranges are
max{X - x, 0} and max{Y - y, 0}, respectively
• X, Y are some large enough constants

• The profit of each group depends on the quantity and
type of fruit it grows, and the market price

Transferable Utility Games:

Happy Farmers

11

• n children, each has some amount of money
– the i-th child has bi dollars

• three types of ice-cream tubs are for sale:
– Type 1 costs $7, contains 500g

– Type 2 costs $9, contains 750g

– Type 3 costs $11, contains 1kg

• children have utility for ice-cream,
and do not care about money

• The payoff of each group: the maximum quantity
of ice-cream the members of the group can buy
by pooling their money

• The ice-cream can be shared arbitrarily within the group

Transferable Utility Games:

Buying Ice-cream

12

Characteristic Function Games

vs. Partition Function Games

• In general TU games, the payoff obtained by a
coalition depends on the actions
chosen by other coalitions
– these games are also known as

partition function games (PFG)

• Characteristic function games (CFG):
the payoff of each coalition only
depends on the action of that coalition
– in such games, each coalition can be identified

with the profit it obtains by choosing its best action

– Ice Cream game is a CFG

– Happy Farmers game is a PFG, but not a CFG

13

Classes of Cooperative Games:

The Big Picture

• Any TU game can be represented as an NTU
game with a continuum of actions
– each payoff division scheme in the TU game

can be interpreted as an action in the NTU game

• We will focus on characteristic function
games, and use term “TU games”
to refer to such games

CFG TU NTU

14

How Is a Cooperative Game Played?

• Even though agents work together they are still
selfish

• The partition into coalitions and payoff
distribution should be such that no player
(or group of players) has an incentive to deviate

• We may also want to ensure that the outcome is
fair: the payoff of each agent is proportional to
his contribution

• We will now see how to formalize these ideas

15

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and
computational issues

16

Transferable Utility Games

Formalized

• A transferable utility game is a pair (N, v), where:
– N ={1, ..., n} is the set of players

– v: 2N → R is the characteristic function
• for each subset of players C, v(C) is the amount that the

members of C can earn by working together

– usually it is assumed that v is
• normalized: v(Ø) = 0

• non-negative: v(C) ≥ 0 for any C ⊆ N

• monotone: v(C) ≤ v(D) for any C, D such that C ⊆ D

• A coalition is any subset of N;
N itself is called the grand coalition

17

Ice-Cream Game: Characteristic

Function

 C: $6, M: $4, P: $3

 w = 500 w = 750 w = 1000

 p = $7 p = $9 p = $11

• v(Ø) = v({C}) = v({M}) = v({P}) = 0

• v({C, M}) = 750, v({C, P}) = 750, v({M, P}) = 500

• v({C, M, P}) = 1000
18

Transferable Utility Games: Outcome

• An outcome of a TU game G =(N, v)
is a pair (CS, x), where:

– CS =(C1, ..., Ck) is a coalition structure,
i.e., partition of N into coalitions:

•  i Ci = N, Ci  Cj = Ø for i ≠ j

– x = (x1, ..., xn) is a payoff vector,
which distributes the value
of each coalition in CS:

• xi ≥ 0 for all i N

• SiC xi = v(C) for each C is CS

1 2

3
4

5

19

Transferable Utility Games: Outcome

• Example:

– suppose v({1, 2, 3}) = 9, v({4, 5}) = 4

– then (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome

– (({1, 2, 3}, {4, 5}), (2, 3, 2, 3, 3))
is NOT an outcome: transfers
between coalitions are not allowed

• An outcome (CS, x) is called an
imputation if it satisfies individual rationality:
xi ≥ v({i}) for all i  N

• Notation: we will denote SiC xi by x(C)

1 2

3
4

5

20

Superadditive Games

• Definition: a game G = (N, v) is called
superadditive if v(C U D) ≥ v(C) + v(D)
for any two disjoint coalitions C and D

• Example: v(C) = |C|2:

– v(C U D) = (|C|+|D|)2 ≥ |C|2+|D|2 = v(C) + v(D)

• In superadditive games, two coalitions can always
merge without losing money; hence, we can
assume that players form the grand coalition

21

• Convention: in superadditive games, we identify
outcomes with payoff vectors for the grand coalition
– i.e., an outcome is a vector x = (x1, ..., xn) with SiN xi = v(N)

• Caution: some GT/MAS papers define outcomes in
this way even if the game is not superadditive

• Any non-superadditive game G = (N, v) can be
transformed into a superadditive game GSA = (N, vSA)

 by setting vSA(C) = max(C1, ..., Ck)P(C) S i = 1, ..., k v(Ci),
where P(C) is the space of all partitions of C

• GSA is called the superadditive cover of G

Superadditive Games

22

Part 1: Overview

• Introduction

• Definitions

• Solution concepts
– core

– least core

– nucleolus

– bargaining set

– kernel

– Shapley value and Banzhaf index

• Representations and computational issues
23

What Is a Good Outcome?

• C: $4, M: $3, P: $3

• v(Ø) = v({C}) = v({M}) = v({P}) = 0
• v({C, M}) = 500, v({C, P}) = 500, v({M, P}) = 0
• v({C, M, P}) = 750
• This is a superadditive game

– outcomes are payoff vectors

• How should the players share the ice-cream?
– if they share as (200, 200, 350), Charlie and Marcie

can get more ice-cream by buying a 500g tub on their
own, and splitting it equally

– the outcome (200, 200, 350) is not stable!
24

• Definition: the core of a game is the set of all
stable outcomes, i.e., outcomes that no coalition
wants to deviate from

 core(G) = {(CS, x) | SiC xi ≥ v(C) for any C ⊆ N}
– each coalition earns at least

as much as it can make on its own

• Note that G is not assumed
to be superadditive

• Example
– suppose v({1, 2, 3}) = 9,

v({4, 5}) = 4, v({2, 4}) = 7
– then (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is NOT in the core

Transferable Utility Games:

Stability

1 2

3
4

5

25

Ice-Cream Game: Core

• C: $4, M: $3, P: $3

• v(Ø) = v({C}) = v({M}) = v({P}) = 0, v({C, M, P}) = 750

• v({C, M}) = 500, v({C, P}) = 500, v({M, P}) = 0

• (200, 200, 350) is not in the core:
– v({C, M}) > xC + xM

• (250, 250, 250) is in the core:
– no subgroup of players can deviate so that each member

of the subgroup gets more

• (750, 0, 0) is also in the core:
– Marcie and Pattie cannot get more on their own!

26

Games with Empty Core

• The core is a very attractive solution concept

• However, some games have empty cores

• G = (N, v)
– N = {1, 2, 3}, v(C) = 1 if |C| > 1 and v(C) = 0 otherwise

– consider an outcome (CS, x)

– if CS = ({1}, {2}, {3}), the grand coalition can deviate

– if CS = ({1, 2}, {3}), either 1 or 2 gets less than 1,
so can deviate with 3

– same argument for CS = ({1, 3}, {2}) or CS = ({2, 3}, {1})

– suppose CS = {1, 2, 3}:

 xi > 0 for some i, so x(N\{i}) < 1, yet v(N\{i}) = 1
27

Core and Superadditivity

• Suppose the game is not superadditive, but
the outcomes are defined as payoff vectors
for the grand coalition

• Then the core may be empty, even if according to
the standard definition it is not

• G = (N, v)
– N = {1, 2, 3, 4}, v(C) = 1 if |C| > 1 and v(C) = 0 otherwise

– not superadditive: v({1, 2}) + v({3, 4}) = 2 > v({1, 2, 3, 4})

– no payoff vector for the grand coalition is in the core:

 either {1, 2} or {3, 4} get less than 1, so can deviate

– (({1, 2}, {3, 4}), (½, ½, ½, ½)) is in the core
28

e-Core

• If the core is empty, we may want to find
approximately stable outcomes

• Need to relax the notion of the core:
 core: (CS, x): x(C) ≥ v(C) for all C  N
 e-core: (CS, x): x(C) ≥ v(C) - e for all C  N
• Is usually defined for superadditive games only
• Example: G = (N, v), N = {1, 2, 3},

 v(C) = 1 if |C| > 1, v(C) = 0 otherwise
– 1/3-core is non-empty: (1/3, 1/3, 1/3) 1/3-core
– e-core is empty for any e < 1/3:
 xi ≥ 1/3 for some i = 1, 2, 3, so x(N\{i}) ≤ 2/3, v(N\{i}) = 1

29

Least Core

• If an outcome (CS, x) is in e-core,
the deficit v(C) - x(C) of any coalition is at most e

• We are interested in outcomes that minimize the
worst-case deficit

• Let e*(G) = inf { e | e-core of G is not empty }
– it can be shown that e*(G)-core is not empty

• Definition: e*(G)-core is called the least core of G
– e*(G) is called the value of the least core

• G = (N, v), N = {1, 2, 3},
 v(C) = 1 if |C| > 1, v(C) = 0 otherwise
– 1/3-core is non-empty, but e-core is empty

for any e < 1/3, so least core = 1/3-core
30

Further Solution Concepts

• We will now define 5 more solution concepts:
– the nucleolus

– the bargaining set

– the kernel

– the Shapley value

– the Banzhaf index

• For simplicity, we will define all these solution
concepts for superadditive games only
– however, all definitions generalize to non-

superadditive games

more complicated
stability considerations

fairness
considerations

31

Nucleolus

• Least core is always non-empty
• However, it may contain more than one point
• Can we identify the most stable point

in the least core?
• Given an outcome x of a game G(N, v),

let d(C) = v(C) - x(C)
– d(C) is called the deficit of C wrt x

• The least core minimizes the max deficit
• The nucleolus of G is an imputation that

– minimizes the max deficit
– given this, minimizes the 2nd-largest deficit, etc.

32

Nucleolus: Formal Definition and

Properties

• Definition: the deficit vector for an outcome x is
the list of deficits of all 2n coalitions, ordered
from the largest to the smallest

• Definition: the nucleolus is an imputation that
corresponds to the lexicographically smallest
deficit vector

• If we optimize over all outcomes (and not just
imputations), we obtain pre-nucleolus

• Nucleolus is unique
– the “most stable” outcome

• Appears in Talmud as an estate division scheme
33

Objections and Counterobjections

• An outcome is not in the core is some coalition
objects to it; but is the objection itself plausible?

• Fix an imputation x for a game G=(N, v)
• A pair (y, S), where y is an imputation and S ⊆ N,

is an objection of player i against player j to x if
– i  S, j  S, y(S) = v(S)
– yk > xk for all k  S

• A pair (z, T), where z is an imputation and T ⊆ N,
is a counterobjection to the objection (y, S) if
– j  T, i  T, z(S) = v(S), T  S ≠ Ø
– zk ≥ xk for all k  T \ S
– zk ≥ yk for all k  T  S

34

Bargaining Set

• An objection is said to be justified if in does
not admit a counterobjection

• Definition: the bargaining set of a game G
consist of all imputations that do not admit a
justified objection

• The core is the set of all imputations that do
not admit an objection. Hence

 core ⊆ bargaining set

35

Kernel (1/2)

• Let I(i, k) = { C ⊆ N | i  C, k  C}

• Definition: the surplus sur(i, k) of an agent i over
agent k wrt an imputation x is

 sur(i, k) = max CI(i,k) d(C), where d(C) = v(C) - x(C)

• Definition: an agent i outweighs agent k
under x if sur(i, k) > sur(k, i)

• If i outweighs k under x,
i should be able to claim some of k’s payoff xk

• However, the amount he can claim is limited by
individual rationality: we should have xk ≥ v({k})

 36

Kernel (2/2)

• Definition: two agents i and k are in
equilibrium with respect to the imputation x
if one of the following holds:
– sur(i, k) = sur(k, i)

– sur(i, k) > sur(k, i) and xk = v({k})

– sur(i, k) < sur(k, i) and xi = v({i})

• Definition: an imputation x is in the kernel if
any two agents i and k are in equilibrium wrt x

 nucleolus ⊆ kernel ⊆ bargaining set

37

Stability vs. Fairness

• Outcomes in the core may be unfair

• G = (N, v)

– N = {1, 2}, v(Ø) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20

• (15, 5) is in the core:

– player 2 cannot benefit by deviating

• However, this is unfair since 1 and 2 are
symmetric

• How do we divide payoffs in a fair way?

38

Marginal Contribution

• A fair payment scheme would reward each agent
according to his contribution

• First attempt: given a game G = (N, v),
set xi = v({1, ..., i-1, i}) - v({1, ..., i-1})
– payoff to each player = his marginal contribution to the

coalition of his predecessors

• We have x1 + ... + xn = v(N)
– x is a payoff vector

• However, payoff to each player depends on the order

• G = (N, v)
– N = {1, 2}, v(Ø) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20

– x1 = v(1) - v(Ø) = 5, x2 = v({1, 2}) - v({1}) = 15
39

Average Marginal Contribution

• Idea: to remove the dependence on ordering,
can average over all possible orderings

• G = (N, v)

– N = {1, 2}, v(Ø) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20

– 1, 2: x1 = v(1) - v(Ø) = 5, x2 = v({1, 2}) - v({1}) = 15

– 2, 1: y2 = v(2) - v(Ø) = 5, y1 = v({1, 2}) - v({2}) = 15

– z1 = (x1 + y1)/2 = 10, z2 = (x2 + y2)/2 = 10

– the resulting outcome is fair!

• Can we generalize this idea?
40

Shapley Value

• Reminder: a permutation of {1,..., n}
is a one-to-one mapping from {1,..., n} to itself
– let P(N) denote the set of all permutations of N

• Let Sp(i) denote the set of predecessors of i in pP(N)

• For C⊆N, let di(C) = v(C U {i}) - v(C)
• Definition: the Shapley value of player i

in a game G = (N, v) with |N| = n is

 fi(G) = 1/n! S p: p  P(N) di(Sp(i))

• In the previous slide we have f1 = f2 = 10

 i ... Sp(i)

41

Shapley Value:

Probabilistic Interpretation

• fi is i’s average marginal contribution
to the coalition of its predecessors,
over all permutations

• Suppose that we choose a permutation of
players uniformly at random, among all
possible permutations of N

– then fi is the expected marginal contribution
of player i to the coalition of his predecessors

42

Shapley Value: Properties (1)-(2)

• Proposition: in any game G,
 f1 + ... + fn = v(N)

– (f1, ..., fn) is a payoff vector

• Definition: a player i is a dummy in a game
G = (N, v) if v(C) = v(C U {i}) for any C ⊆ N

• Proposition: if a player i is a dummy
in a game G = (N, v) then fi = 0

43

Shapley Value: Properties (3)-(4)

• Definition: given a game G = (N, v),
two players i and j are said to be symmetric
if v(C U {i}) = v(C U {j}) for any C ⊆ N\{i, j}

• Proposition: if i and j are symmetric then fi = fj

• Definition: Let G1 = (N, u) and G2 = (N, v) be two
games with the same set of players.
Then G = G1 + G2 is the game with the set of
players N and characteristic function w given by
w(C) = u(C) + v(C) for all C ⊆ N

• Proposition: fi(G1+G2) = fi(G1) + fi(G2)
44

Axiomatic Characterization

• Properties of Shapley value:

1. Efficiency: f1 + ... + fn = v(N)

2. Dummy: if i is a dummy, fi = 0

3. Symmetry: if i and j are symmetric, fi = fj

4. Additivity: fi(G1+G2) = fi(G1) + fi(G2)

• Theorem: Shapley value is the only payoff
distribution scheme that has properties
(1) - (4)

45

Banzhaf Index

• Instead of averaging over all permutations of
players, we can average over all coalitions

• Definition: the Banzhaf index of player i
in a game G = (N, v) with |N| = n is
 bi(G) = 1/2n-1 S C⊆N\{i} di(C)

• Satisfies dummy axiom, symmetry and
additivity

• However, may fail efficiency:
 it may happen that S i  N bi ≠ v(N)

46

Shapley and Banzhaf: Examples

• Example 1 (unanimity game):

– G = (N, v), |N| = n, v(C) = 1 if C = N, v(C) = 0 otherwise

– di(C) = 1 iff C = N\{i}

– fi(G) = (n-1)!/n! = 1/n for i = 1,, n

– bi(G) = 1/2n-1 for i = 1,, n

• Example 2 (majority game):

– G = (N, v), |N| = 2k, v(C) = 1 if |C| > k, v(C) = 0 otherwise

– di(C) = 1 iff |C| = k

– fi(G) = (n-1)!/n! = 1/n for i = 1,, n

– bi(G) = 1/2n-1 x (2k)!/(k!)2 ≈ 2/√(pk) for i = 1,, n

47

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and
computational issues

48

Computational Issues

in Coalitional Games

• We have defined many solution concepts -
but can we compute them efficiently?

• Problem: the naive representation of a
coalitional game is exponential
in the number of players n

– need to list values of all coalitions

• We are usually interested in algorithms whose
running time is polynomial in n

• So what can we do?
49

How to Deal with

Representation Issues?

• Strategy 1: oracle representation
– assume that we have a black-box poly-time algorithm

that, given a coalition C ⊆ N, outputs its value v(C)
– for some special classes of games, this allows us

compute some solution concepts using polynomially
many queries

• Strategy 2: restricted classes
– consider games on combinatorial structures
– problem: not all games can be represented in this way

• Strategy 3: give up on worst-case succinctness
– devise complete representation languages that allow

for compact representation of interesting games

50

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and computational issues

– oracle representation

– combinatorial optimization games

• weighted voting games

– complete representation languages

51

Simple Games

• Definition: a game G = (N, v) is simple if
– v(C){0, 1} for any C ⊆ N
– v is monotone: if v(C) = 1 and C ⊆ D, then v(D) = 1

• A coalition C in a simple game is said to be
winning if v(C) = 1 and losing if v(C) = 0

• Definition: in a simple game, a player i is
 a veto player if v(C) = 0 for any C ⊆ N\{i}
– equivalently, by monotonicity, v(N\{i}) = 0

• Traditionally, in simple games an outcome is
identified with a payoff vector for N

• Theorem: a simple game has a non-empty core
iff it has a veto player.

52

Simple Games:

Characterization of the Core

• Proof ():
– suppose i is a veto player

– consider a payoff vector x with xi = 1, xk = 0 for k ≠ i

– no coalition C can deviate from x:
• if i  C, we have S kC xk = 1 ≥ v(C)

• if i  C, we have v(C) = 0

• Proof ():
– consider an arbitrary payoff vector x:

– we have SkN xk = v(N) = 1; thus xi > 0 for some iN

– but then N\{i} can deviate:
• since i is not a veto, v(N\{i}) = 1, yet x(N\{i}) = 1 - xi < 1

N
i

xi > 0

53

Simple Games:

Checking Non-Emptiness of the Core

• Corollary: in a simple game G,
a payoff vector x is in the core iff
xi = 0 for any non-veto player i
– proved similarly

• Checking if a player i is a veto player is easy
– a single oracle access to compute v(N\{i})

• Thus, in simple games
– checking non-emptiness of the core or
– checking if a given outcome is in the core

 is easy given oracle access to the characteristic
function
– this is no longer the case if we allow coalition structures

54

• Definition: a function f:2N → R is called
supermodular
if f(Ø) = 0 and f(A  B) + f(A  B) ≥ f(A) + f(B)
for any A, B ⊆ N (not necessarily disjoint)
– any supermodular function is superadditive,

but the converse is not true

• Proposition: if f is supermodular , T ⊂ S, and i  S,
then f(T  {i}) - f(T) ≤ f(S  {i}) - f(S)
– a player is more useful when

he joins a bigger coalition

• Definition: a game G = (N, v) is convex
if its characteristic function is supermodular i

T S

 Convex Games

A B

55

Convex Games:

Non-Emptiness of The Core

• Proposition: any convex game has a non-empty core

• Proof:
– set x1 = v({1}),

 x2 = v({1, 2}) - v({1}),
 ...
 xn = v(N) - v(N\{n})

• i.e., pay each player his marginal contribution to
the coalition formed by his predecessors

– x is a payoff vector: x1 + x2 + ... + xn =
= v({1}) + v({1, 2}) - v({1}) + ... + v(N) - v(N\{n}) = v(N)

– remains to show that (x1, x2, ..., xn) is in the core
56

Convex Games Have Non-Empty Core

• Proof (continued):

– x1 = v({1}), x2 = v({1, 2}) - v({1}), ..., xn = v(N)-v(N\{n})

– pick any coalition C = {i, j, ..., s}, where i < j < ... < s

– we will prove v(C) ≤ xi + xj + ... + xs , i.e., C cannot deviate

– v(C) = v({i}) + v({i, j}) - v({i}) + ... + v(C) - v(C\{s})

• v({i}) = v({i}) - v(Ø) ≤ v({1, ..., i-1, i}) - v({1, ..., i-1}) = xi

• v({i, j}) - v({i}) ≤ v({1, ..., j-1, j}) - v({1, ..., j-1}) = xj

•

• v(C) - v(C\{s}) ≤ v({1, ..., s-1, s}) - v({1, ..., s-1}) = xs

– thus, v(C) ≤ xi + xj + ... + xs

i j s
57

Convex Games: Remarks

• This proof suggests a simple algorithm for
constructing an outcome in the core
– order the players as 1, ..., n

– query the oracle for v({1}), v({1, 2}), ..., v(N)

– set xi = v({1, ..., i-1, i}) - v({1, ..., i-1})

• This argument also shows that for convex
games the Shapley value is in the core
– the core is a convex set

– Shapley value is a convex combination of
outcomes in the core

58

Checking Non-emptiness of the Core:

Superadditive Games

• An outcome in the core of a superadditive
game satisfies the following constraints:

 xi ≥ 0 for all i N

 SiN xi = v(N)

 SiC xi ≥ v(C) for any C ⊆ N

• A linear feasibility program, with one constraint
for each coalition: 2n+n+1 constraints

– sometimes can be solved in polynomial time
solvers using separation oracles

59

Superadditive Games:

Computing the Least Core

• LFP for the core

 min e

 xi ≥ 0 for all i N

 SiN xi = v(N)

 SiC xi ≥ v(C) for any C ⊆ N

• A minimization program, rather than a
feasibility program

– sometimes can be solved in polynomial time
using a separation oracle

- e

LP for the least core

60

Core and Related Concepts:

Non-Superadditive Games

• What if the game is not superadditive?

• Can solve a similar LFP for each coalition
structure CS = (C1, ..., Ck):

 xi ≥ 0 for all i N

 SiC1 xi = v(C1)

 ...

 SiCk xi = v(Ck)

 SiC xi ≥ v(C) for any C ⊆ N

• Running time: # of partitions of N x time to solve
an exp-sized LFP - infeasible in general.

61

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and computational issues

– oracle representation

– combinatorial optimization games

• weighted voting games

– complete representation languages

62

Weighted Voting Games

• n parties in the parliament
• Party i has wi representatives
• A coalition of parties can form a government

only if its total size is at least q
– usually q ≥  S i=1, ..., n wi /2  + 1: strict majority

• Notation: w(C) = S iC wi
• This setting can be described by a game G = (N, v), where

– N = {1, ..., n}
– v(C) = 1 if w(C) ≥ q and v(C) = 0 otherwise

• Observe that weighted voting games are simple games
• Notation: G = [q; w1, ..., wn]

– q is called the quota

63

Weighted Voting Games: UK

• United Kingdom, 2005:
– 650 seats, q = 326

– Conservatives (C): 196

– Labour (L): 354

– Liberal Democrats (LD): 62

– 8 other parties (O), with a total of 38 seats

• N = {C, L, LD, O}

• for any X ⊆ N, v(X) = 1 if and only if LX

• L is a veto player, C, LD, and O are dummies

• fL = 1, fC = fLD = fO = 0
64

Weighted Voting Games: UK

• United Kingdom, 2010:
– 650 seats, q = 326

– Conservatives (C): 307

– Labour (L): 258

– Liberal Democrats (LD): 57

– 8 other parties (O), with a total of 28 seats

• N = {C, L, LD, O}

• v({C, L}) = v({C, LD}) = v({C, O}) = 1

• v({L, LD}) = v({L, O}) = v({LD, O}) = 0, v({L, LD, O}) = 1

• L, LD and O are symmetric

• fC = 1/2, fL = fLD = fO = 1/6

65

Weighted Voting Games as

Resource Allocation Games

• Each agent i has a certain amount of a resource wi

– time or money or battery power

• One or more tasks with a resource requirement
q and a value V

• If a coalition has enough resources to complete
the task (q or more units),
it earns its value V, else it earns 0

– By normalization, can assume V = 1

• If q < S i wi/2, grand coalition need not form

– weighted voting games with coalition structures
66

Shapley Value in

Weighted Voting Games

• In a simple game G = (N, v), a player i is said to be
pivotal
– for a coalition C ⊆ N if v(C) = 0, v(C U {i}) = 1

– for a permutation pP(N) if he is pivotal for Sp(i)

• In simple games player i’s Shapley value =
Pr[i is pivotal for a random permutation]
– measure of voting power

• Shapley value is widely used to measure power in
various voting bodies

• UK elections’10 illustrate that power ≠ weight

67

Weighted Voting Games:

Computational Aspects

• Deciding if a player is a dummy: coNP-complete

• Computing Shapley value and Banzhaf index:

– #P-complete [Deng & Papadimitriou’94]

– hard to approximate

• Computing the core/checking if
an outcome is in the core:

– poly-time (since WVG are simple games)

– if we allow coalition structures, these problems
become computationally hard [Elkind et al.’08b]

68

Weighted Voting Games:

Small Weights

• Suppose all weights are at most polynomial in n

– realistic in many applications

• Then

– Shapley value and Banzhaf index can be
computed in poly-time by dynamic programming
[Matsui & Matsui’00]

– value of the least core is poly-time computable
[Elkind et al.’09a]

– nucleolus is poly-time computable
[Elkind and Pasechnik’09]

69

WVG and Simple Games

• WVGs are simple games

• Can every simple game be represented as a WVG?

• G = (N, v):
– N = {1, 2, 3, 4}

– v(C) = 1 iff C  {1, 3} ≠ Ø and C  {2, 4} ≠ Ø

• Suppose G = [q; w1, w2, w3, w4]

 w1 + w2 ≥ q, w3 + w4 ≥ q

 w1 + w2 + w3 + w4 ≥ 2q

 w1 + w3 < q, w2 + w4 < q

 w1 + w2 + w3 + w4 < 2q

a contradiction!

70

A Generalization:

Vector Weighted Voting Games

• The game in the previous slide can be thought of as
a combination of two WVGs:

– Godd = [1; 1, 0, 1, 0] and Geven = [1; 0, 1, 0, 1]

– to win, a coalition needs to win in both games

• Definition: a k-weighted voting game is a tuple
 [N; q; w1, ..., wn], where |N| = n and

– q = (q1, ..., qk) is a vector of k real quotas

– for each iN, wi = (w1
i, ..., w

k
i) is a vector of k real weights

• v(C) = 1 if S iC wi
j ≥ q

j for each j = 1, ..., k and
v(C) = 0 otherwise

71

Vector Weighted Voting Games

• Given a k-VWVG G = [N; q; w1, ..., wn],
we can define G j = [q j ; w j 1, ..., w j

n]

• G j is a weighted voting game
– we will refer to G j as the j-th component of G

• To win in G, a coalition needs to win
in each of the component games
– we can write G = G1 ⋀ ... ⋀ Gk

– thus, G is a conjunction of its component games

• a k-VWG models a resource allocation games
with k types of resources
– each task needs q j units of resource j

72

VWVG in the Wild: EU Voting

• Voting in the European Union is a 3-WVG
G = G1 ⋀ G2 ⋀ G3, where
– G1 corresponds to commissioners

– G2 corresponds to countries

– G3 corresponds to population

• The players are the 27 member states:
Germany, UK, France, Italy, Spain, Poland,
Romania, The Netherlands, Greece, Czech
Republic, Belgium, Hungary, Portugal, Sweden,
Bulgaria, Austria, Slovak Republic, Denmark,
Finland, Ireland, Lithuania, Latvia, Slovenia,
Estonia, Cyprus, Luxembourg, Malta.

73

EU Voting Game

• G1 = [255; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12,
12, 12, 10, 10, 10, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 3]

• G2 = [14; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1]

• G3 = [620; 170, 123, 122, 120, 82, 80, 47, 33, 22, 21,
21, 21, 21, 18, 17, 17, 11, 11, 11, 8, 8, 5, 4, 3, 2, 1, 1]

– UK, Greece, Estonia

• For a proposal to pass, it needs to be supported by
– 74% of the commissioners

– 50% of the member states

– 62% of the EU population
74

VWVGs and Simple Games

• VWVGs are strictly more expressive than WVGs
• Theorem: any simple game can be represented

as a vector weighted voting game
• Proof: consider a simple game G=(N, v)

– for each losing coalition C ⊆ N, we construct
a game GC = [qC; wC

1, ..., wC
n] as follows:

 qC = 1, wC
i = 1 if iC and wC

i = 0 if iC
• D loses in GC iff D ⊆ C

– Let G* = ⋀ v(C) = 0 G
C

– if v(D) = 0, D loses in GD and hence in G*
– if v(D) = 1, by monotonicity D wins in each

component game and hence in G* 75

Dimensionality

• Vector weighted voting games form a complete
representation language for simple games

• However, the construction in the previous slide
may use exponentially many component games

• Definition: the dimension dim(G) of a simple
game G is the minimum number of
components in its VWVG representation

– every simple game has dimension O(2n)

– there exist simple games of dimension W(2n/2-1)
76

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and computational issues

– oracle representation

– combinatorial optimization games

• weighted voting games

– complete representation languages

77

• Players are vertices of a weighted graph

• Value of a coalition =
total weight of internal edges
– v(T) = x+y, v(S) = x+y+z+t

• Models social networks
– Facebook, LinkedIn

– cell phone companies with free
in-network calls

• If all edge weights are non-negative,
this game is convex:

– dv(S) ≥ dv(T)

Induced Subgraph Games

v T

S

x y

z t

78

• If all edge weights are non-negative,
the core is non-empty
– also, we can check in poly-time

if a given outcome is in the core

• In general, determining emptiness
of the core is NP-complete

• Shapley value is easy to compute:
– let E = {e1, ..., ek} be the list of edges of the graph
– let Gj be the induced subgraph game

on the graph that contains edge ej only
– we have G = G1 + ... +Gk

– fi(G
j) = w(ej)/2 if ej is adjacent to i and 0 otherwise

– fi(G) = (weight of edges adjacent to i)/2

Induced Subgraph Games: Complexity

[Deng, Papadimitriou’94]

G

G1

G2

G3

79

Network Flow Games

• Agents are edges in a network with source s and sink t

– edge ei has capacity ci

• Value of a coalition = amount of s–t flow it can carry

– v({sa, at}) = 4, v({sa, at, st}) = 7

• Thresholded network flow games (TNFG):
there exists a threshold T such that

– v(C) = 1 if C can carry ≥ T units of flow

– v(C) = 0 otherwise

• TNFG with T = 6

– v({sa, at}) = 0, v({sa, at, st}) = 1

s t

a

b

4 6
3

1 5

80

Assignment Games

[Shapley & Shubik’72]

• Players are vertices of a
bipartite graph (V, W, E)

• Value of a coalition = weight of
the max-weight induced matching

– v({x, y, z}) = 0, v({x, x’, y’}) = 3

• Generalization: matching games

– same definition, but the graph need not be bipartite

x

y

z z’

y’

x’
1

1

1

3

2

81

Part 1: Overview

• Introduction

• Definitions

• Solution concepts

• Representations and computational issues

– oracle representation

– combinatorial optimization games

• weighted voting games

– complete representation languages

82

Coalitional Skill Games

[Bachrach & Rosenschein’08]

• Set of skills S = {s1, . . . , sk}

• Set of agents N: agent i has a subset of skills Si ⊆ S

• Set of tasks T = {t1, . . . , tm}
– each task tj requires a subset of skills S(tj) ⊆ S

• A skill set of a coalition C: s(C) = U iC Si

• Tasks that C can perform: T(C) = {tj | S(tj) ⊆ S(C)}

• Utility function u : 2T → R
– e.g., sum or max of values of individual tasks

• Characteristic function: v(C) = u(T(C))

83

Coalitional Skill Games:

Expressiveness and Complexity

• Any monotone game can be expressed as a CSG:
– given a game G = (N, v),

we create a task tC and set u(tC) = v(C) for any C ⊆ N

– each agent i has a unique skill si

– tC requires the skills of all agents in C

– set u(T’) = max { u(t) | t  T’ }

– u(T(C)) = max {u(tD) | D ⊆ C} = max {v(D) | D ⊆ C} = v(C)

• However, the representation is only succinct when the
game is naturally defined via a small set of tasks

• [Bachrach&Rosenschein’08] discuss complexity of
many solution concepts under this formalism

84

Synergy Coalition Games

[Conitzer & Sandholm’06]

• Superadditive game: v(C U D) ≥ v(C) + v(D)
for any two disjoint coalitions C and D

• Idea: if a game is superadditive, and
v(C) = v(C1) + ... + v(Ck) for any partition (C1, ..., Ck)
of C (no synergy), no need to store v(C)

• Representation: list v({1}), ... v({n}) and all synergies
• Succinct when there are few synergies
• This representation allows for efficient checking

if an outcome is in the core.
• However, it is still hard to check

if the core is non-empty.

85

Marginal Contribution Nets

[Ieong & Shoham’05]

• Idea: represent the game by a set of rules
of the form pattern → value
– pattern is a Boolean formula over N

– value is a number

• A rule applies to a coalition if its fits the pattern

• v(C) = sum of values of all rules that apply to C

• Example:
R1: (1 ⋀ 2) ⋁ 5 → 3

R2: 2 ⋀ 3 → -2

 v({1, 2}) = 3, v({2, 3}) = -2, v({1, 2, 3}) = 1

 86

Marginal Contribution Nets

• Computing the Shapley value:
– let G(R1, ..., Rk) be the game given by the set of rules R1, ..., Rk

– we have G(R1, ..., Rk) = G(R1) + ... + G(Rk)

– thus, by additivity it suffices to compute players’ Shapley
values in games with a single rule R

– if R = y → x, where y is a conjunction of k variables,
then fi = x/k if i appears in y and 0 otherwise

– a more complicated (but still poly-time) algorithm
for read-once formulas [Elkind et al.’09b]

– NP-hard for if y is an arbitrary Boolean formula

• Core-related questions are computationally hard
[Ieong&Shoham’05]

 87

How do we partition the set of agents into coalitions to
maximize the overall profit?

Coalition Structure Generation

88

optimal
coalition
structure

Example: given 3 agents, the possible coalitions are:

{a1} {a2} {a3} {a1,a2} {a1,a3} {a2,a3} {a1,a2,a3}

 The possible coalition structures are:

{{a1},{a2},{a3}} {{a1,a2},{a3}} {{a2},{a1,a3}} {{a1},{a2,a3}} {{a1,a2,a3}}

The Coalition Structure Generation Problem

89

v({a1}) = 20

v({a2}) = 40

v({a3}) = 30

v({a1,a2}) = 70

v({a1,a3}) = 40

v({a2,a3}) = 65

v({a1,a2,a3}) = 95

 The input is the
characteristic function

What we want as output is a
coalition structure in which the

sum of values is maximized

V({{a1},{a2},{a3}}) = 20+40+30 = 90

V({{a1,a2},{a3}}) = 70+30 = 100

V({{a2},{a1,a3}}) = 40+40 = 80

V({{a1},{a2,a3}}) = 20+65 = 85

V({{a1,a2,a3}} = 95

How should we solve this problem?

We will present multiple algorithms, but first we need to present
the main representations of the search space (the set of coalition

structures, denoted as P
A)

Coalition Structure Generation

90

The Coalition Structure Graph

(example of 4 agents)

{a1},{a2},{a3,a4} {a3},{a4},{a1,a2} {a1},{a3},{a2,a4} {a2},{a4},{a1,a3} {a1},{a4},{a2,a3} {a2},{a3},{a1,a4}

{a1},{a2},{a3},{a4}

{a1},{a2,a3,a4} {a1,a2},{a3,a4} {a2},{a1,a3,a4} {a1,a3},{a2,a4} {a3},{a1,a2,a4} {a1,a4},{a2,a3} {a4},{a1,a2,a3}

{a1,a2,a3,a4}

P4
𝐴

P𝑖
𝐴 ⊆ P

A contains all coalition structures that consist of exactly i coalitions

91

P3
𝐴

P2
𝐴

P1
𝐴

92

{{a1}, {a2}, {a3,a4}} ,

{{a2}, {a3}, {a1,a4}} ,

{{a1}, {a3}, {a2,a4}} ,

{{a2}, {a4}, {a1,a3}} ,

{{a1}, {a4}, {a2,a3}} ,

{{a3}, {a4}, {a1,a2}}

{{a1}, {a2}, {a3}, {a4}}

{{a1,a2}, {a3,a4}} ,

{{a1,a3}, {a2,a4}} ,

{{a1,a4}, {a2,a3}}

{{a1, a2, a3, a4}}

{{a1}, {a2,a3,a4}} ,

{{a2}, {a1,a3,a4}} ,

{{a3}, {a1,a2,a4}} ,

{{a4}, {a1,a2,a3}}

{4}

{1,3}

{1,1,1,1}

{2,2}

{1,1,2}

The Integer Partition Graph

(example of 4 agents)

Every node represents a subspace (coalition sizes match the integers in that node)

the subspace
represented

by node {2,2}

=P{1,1,2}
𝐴

=P{2,2}
𝐴 P{1,3}

𝐴 =

P{1,1,1,1}
𝐴 =

P{4}
𝐴 =

Solving the problem using Dynamic Programming

Coalition Structure Generation

93

The Dynamic Programming (DP) Algorithm

Main observation:
To examine all coalition structure CS : |CS|≥2, it is sufficient to:

• try the possible ways to split the set of agents into two sets, and

• for every half, find the optimal partition of that half.

A

A A

A

. . . 94

The Dynamic Programming (DP) Algorithm

Main theorem:

Given a coalition C ∈ A, let P
C be the set of partitions of C, and let f (C) be

the value of an optimal partition of C, i.e., f (C) = 𝑚𝑎𝑥 P ∈P

C V(P). Then,

 f (C) =

v(C) if | C | = 1

otherwise max{ v(C) , 𝑚𝑎𝑥{C′,C′′}∈P

C f (C ′) + f (C ′′) }

the value of the coalition
itself (without partitioning)

the maximum value for all such partitions

. . .

C

C

C C

C

95

The Dynamic Programming (DP) Algorithm

Algorithm:

• Iterate over all coalitions C:|C|=1, then over all C:|C|=2, then all
C:|C|=3, etc.

• For every coalition, C, compute f(C) using the above equation

• While computing f(C):

• the algorithm stores in t(C) the best way to split C in two

• unless it is more beneficial to keep C as it is (i.e., without splitting)

• By the end of this process, f(A) will be computed, which is by definition
the value of the optimal coalition structure

• It remains to compute the optimal coalition structure itself, by using t(A)

Consider the following example of 4 agents

96

evaluations performed before setting coalition

V({1,2})=50 f({1})+f({2})=70

V({1,3})=60 f({1})+f({3})=55

V({1,4})=80 f({1})+f({4})=75

V({2,3})=55 f({2})+f({3})=65

V({2,4})=70 f({2})+f({4})=85

V({3,4})=80 f({3})+f({4})=70

V({1,2,3})=90 f({1})+f({2,3})=95

f({2})+f({1,3})=100 f({3})+f({1,2})=95

V({1,2,4})=120 f({1})+f({2,4})=115

f({2})+f({1,4})=110 f({4})+f({1,2})=115

V({1,3,4})=100 f({1})+f({3,4})=110

f({3})+f({1,4})=105 f({4})+f({1,3})=105

V({2,3,4})=115 f({2})+f({3,4})=120

f({3})+f({2,4})=110 f({4})+f({2,3})=110

V({1,2,3,4})=140 f({1})+f({2,3,4})=150

f({2})+f({1,3,4})=150 f({3})+f({1,2,4})=145

f({4})+f({1,2,3})=145 f({1,2})+f({3,4})=150

f({1,3})+f({2,4})=145 f({1,4})+f({2,3})=145

{1} {2}

{1,3}

{1,4}

{2} {3}

{2} {4}

{3,4}

{2} {1,3}

{1,2,4}

{1} {3,4}

{2} {3,4}

{1,2} {3,4}

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

{1,2,3,4}

70

60

80

65

85

80

100

120

110

120

150

V({1})=30

V({2})=40

V({3})=25

V({4})=45

{1}

{2}

{3}

{4}

{1}

{2}

{3}

{4}

30

40

25

45

step 1

step 2

step 3

step 4

v({1}) = 30

v({2}) = 40

v({3}) = 25

v({4}) = 45

v({1,2}) = 50

v({1,3}) = 60

v({1,4}) = 80

v({2,3}) = 55

v({2,4}) = 70

v({3,4}) = 80

v({1,2,3}) = 90

v({1,2,4}) = 120

v({1,3,4}) = 100

v({2,3,4}) = 115

v({1,2,3,4}) = 140

input:

step 5

Example: t f f

The Dynamic Programming (DP) Algorithm

Note:
• While DP is guaranteed to find an optimal coalition structure, many of its

operations were shown to be redundant

• An improved dynamic programming algorithm (called IDP) was developed
that avoids all redundant operations

Advantage:
• IDP is the fastest algorithm that finds an optimal coalition structure in O(3n)

Disadvantage:
• IDP provides no interim solutions before completion, meaning that it is not

possible to trade computation time for solution quality.

Based on this, we present in the following slides algorithms that allow such a
trade off.

98

“Anytime” algorithms

Coalition Structure Generation

99

Anytime Algorithms

Introduction

Definition:

An “anytime” algorithm is one whose solution quality improves
gradually as computation time increases.

This way, an interim solution is always available in case the algorithm
run to completion

Advantages:

• agents might not have time to run the algorithm to completion

• Being anytime makes the algorithm more robust against failure.

Notation:
We will denote the optimal coalition structure as CS*

100

1. Algorithms based on Identifying Subspaces with Worst-Case
Guarantees

Anytime Algorithms

101

T 25%
the worst-case
guarantee is:

P

′

is there a subset P

′⊆P

A with worst-

case guarantees on solution quality?

The optimal solution is:

102

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

𝐶𝑆∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑆 ∈P
 A V(CS)

P
A

T b = 4
the bound from

optimum is:

i.e., a subset P

′⊆P

A guaranteed to

contain a solution that is within a

bound b from optimum? That is,

=
P

A P

′

𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑆 ∈P

 A V(CS)

𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑆 ∈P

 A V(CS)
 ≤ b

Based on this idea, we can design an anytime algorithm:

1. Divide the search space into subsets according to some criterion

2. Identify a sequence in which these subsets must be searched such that
the bound b is improved after each subset

 b = 10 b = 8 b = 3 b = 2 b = 1 b = 4

103

P
A

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

Theorem:
• To establish a worst-case bound, b, it is sufficient to search the lowest 2 levels

of the coalition structure graph, i.e., P1
𝐴 and P2

𝐴

• With this search, the bound is b = n and the number of searched coalition

structures is 2n-1.

• No algorithm can establish any bound by search a different set of at most 2n-1

coalition structures

Proof:
• For a partial search to establish a bound, every C ⊆ A must appear in at least

one of the searched coalition structures.

• The grand coalition appears in P1
𝐴, and

• every other coalition C ⊂ A appears in {C, A\C} ∈ P2
𝐴, thus,

• the value of the best coalition structure in P1
𝐴 ∪ P2

𝐴 is at least 𝑚𝑎𝑥𝐶⊆𝐴 v(C)

• Since 𝐶𝑆∗ include at most n coalitions, then: v(𝐶𝑆∗) ≤ n x 𝑚𝑎𝑥𝐶⊆𝐴 v(C). Thus,

104

V(CS∗)
𝑚𝑎𝑥

𝐶𝑆 ∈P1
𝐴 ∪P2

𝐴

V(CS)

 ≤ n

Search steps of Sandholm et al. [1998]

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

4
.
.
.

1

2

3

105

i

P
A

1

P
A

2

P
A

3

P
A

n-1

P
A

n

• an anytime algorithm was proposed that
searches the coalition structure graph one
level at a time (see sequence in figure).

• The authors showed how the bound
improves once the algorithm finishes

searching every level P𝑖
𝐴 : i = n, …, 3 (see

[Sandholm et al, AIJ-1999] for details).

• An important result is that, after
searching P1

𝐴 ∪ P2
𝐴 (which gives a bound

b = n), it is possible to drop the bound to
b = ⌈𝑛 2 ⌉ by searching P𝑛

𝐴 (which only
contains one coalition structure!)

n

P2
𝐴

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

n

6

5

4

.

.

.

1

2

3

106

Search steps of Dang & Jennings [2004] j

P
A

1

P
A

2

P
A

3

P
A

n-1

P
A

n

A different algorithm was proposed.

• It starts by searching P1
𝐴 ∪P2

𝐴 ∪P𝑛
𝐴 as

before.

• Then, it searches certain subsets of all
remaining levels. Specifically:

• It searches all coalition structures
that have at least one coalition of
size at least ⌈ n(d-1)/d ⌉ (with d
running from ⌊(n+1)/4⌋ down to 2).

• It has been shown that, for any given
value of d, the algorithm establishes a
bound b = 2d - 1

107

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

So far,

• we only know how to specify the bound after searching the
aforementioned subsets of coalition structures.

but how can we specify a tight bound for any subset ?

• We know the minimum subset to be searched to establish b = n

(which is P1
𝐴 ∪ P2

𝐴
) and b = n-1 (which is P1

𝐴 ∪ P2
𝐴 ∪ P𝑛

𝐴
)

But what is the minimum search to establish any bound b = b?

Remember:

We proved that, by searching P1
𝐴∪P2

𝐴, we get a solution that is within a bound
b=n from the optimal solution (i.e., 𝐶𝑆∗)

The intuition was:

• 𝐶𝑆∗ contains at most n coalition, and

• every one of those coalitions appears in some CS ∈P1
𝐴∪P2

𝐴, so

• 𝐶𝑆∗ cannot be more than n times better than the best solution in P1
𝐴∪P2

𝐴

Main idea:

We can generalize this to “groups of coalitions”, i.e.,

• 𝐶𝑆∗ contains at most x groups of coalition, and

• every one of those groups appears in some CS ∈P′ ⊆ P𝐴, so

• 𝐶𝑆∗ cannot be more than x times better than the best solution in P'

108

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

[3,2,1,1,1,1,1]

[3,1,1,1,1,1,1,1]

[2,1,1,1,1,1,1,1,1]

[7,2,1] [6,3,1] [5,4,1] [5,3,2] [4,4,2] [4,3,3]

[10]

[9,1] [8,2] [7,3] [6,4] [5,5]

P

[6,1,1,1,1]

[6,2,2] [8,1,1]

'

[7,1,1,1] [6,2,1,1] [5,3,1,1] [5,2,2,1] [4,4,1,1] [4,3,2,1] [3,3,3,1] [3,3,2,2]

[5,2,1,1,1] [4,3,1,1,1] [4,2,2,1,1] [3,3,2,1,1] [3,2,2,2,1] [2,2,2,2,2]

[4,1,1,1,1,1,1] [2,2,2,1,1,1,1]

[5,1,1,1,1,1] [4,2,1,1,1,1] [3,3,1,1,1,1] [3,2,2,1,1,1] [2,2,2,2,1,1]

[4,2,2,2]

[1,1,1,1,1,1,1,1,1,1]

[2,2,1,1,1,1,1,1]

P
A

109

Space is divided based on integer partitions

Example of 10 agents:

Anytime Algorithms

• every CS ∈P′ contains at least
one of those coalitions

• CS* cannot contain more than 10 coalitions

So, the bound is b = 10

this is the set
that we search

• So far, we searched:

P[10]
𝐴 ∪P[9,1]

𝐴 ∪P[8,2]
𝐴 ∪P[7,3]

𝐴 ∪P[6,4]
𝐴 ∪P[5,5]

𝐴

• Now, what happens if we search P[1,1,1,1,1,1,1,1,1,1]
𝐴 , and consider a

“group” of coalitions to be one in which the sizes of the coalitions
match any of the following?

110

Anytime Algorithms

[1,1]

[1,1,1]

[1,1,1,1]

[1,1,1,1,1]

[1,1,1,1,1,1]

[1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1,1,1]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P '

P
A

111

Anytime Algorithms

[3,2,1,1,1,1,1]

[3,1,1,1,1,1,1,1]

[7,2,1] [6,3,1] [5,4,1] [5,3,2] [4,4,2] [4,3,3]

[10]

[9,1] [8,2] [7,3] [6,4] [5,5]

[6,1,1,1,1]

[6,2,2] [8,1,1]

[7,1,1,1] [6,2,1,1] [5,3,1,1] [5,2,2,1] [4,4,1,1] [4,3,2,1] [3,3,3,1] [3,3,2,2]

[5,2,1,1,1] [4,3,1,1,1] [4,2,2,1,1] [3,3,2,1,1] [3,2,2,2,1] [2,2,2,2,2]

[4,1,1,1,1,1,1] [2,2,2,1,1,1,1]

[5,1,1,1,1,1] [4,2,1,1,1,1] [3,3,1,1,1,1] [3,2,2,1,1,1] [2,2,2,2,1,1]

[4,2,2,2]

[1,1,1,1,1,1,1,1,1,1]

[2,1,1,1,1,1,1,1,1]

[2,2,1,1,1,1,1,1]

Space is divided based on integer partitions

Example of 10 agents:

• every CS ∈P′ contains at least
one of those coalitions

• CS* can be divided into no more than 5 groups

So, the bound is b = 5

this is the set
that we search

• So far, we searched:

 P[1,1,1,1,1,1,1,1,1,1]
𝐴 ∪P[10]

𝐴 ∪P[9,1]
𝐴 ∪P[8,2]

𝐴 ∪P[7,3]
𝐴 ∪P[6,4]

𝐴 ∪P[5,5]
𝐴

• Now, what happens if we search P[2,2,1,1,1,1,1,1]
𝐴 , and consider a “group”

of coalitions to be one in which the sizes of the coalitions match any of
the following?

112

Anytime Algorithms

[2,1]

[2,1,1]

[2,1,1,1]

[2,1,1,1,1]

[2,1,1,1,1,1]

[2,1,1,1,1,1,1]

[2,1,1,1,1,1,1,1]

[2,2]

[2,2,1]

[2,2,1,1]

[2,2,1,1,1]

[2,2,1,1,1,1]

[2,2,1,1,1,1,1]

[1,1]

[1,1,1]

[1,1,1,1]

[1,1,1,1,1]

[1,1,1,1,1,1]

[1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1,1,1]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P '

P
A

113

Anytime Algorithms

[3,2,1,1,1,1,1]

[3,1,1,1,1,1,1,1]

[7,2,1] [6,3,1] [5,4,1] [5,3,2] [4,4,2] [4,3,3]

[10]

[9,1] [8,2] [7,3] [6,4] [5,5]

[6,1,1,1,1]

[6,2,2] [8,1,1]

[7,1,1,1] [6,2,1,1] [5,3,1,1] [5,2,2,1] [4,4,1,1] [4,3,2,1] [3,3,3,1] [3,3,2,2]

[5,2,1,1,1] [4,3,1,1,1] [4,2,2,1,1] [3,3,2,1,1] [3,2,2,2,1] [2,2,2,2,2]

[4,1,1,1,1,1,1] [2,2,2,1,1,1,1]

[5,1,1,1,1,1] [4,2,1,1,1,1] [3,3,1,1,1,1] [3,2,2,1,1,1] [2,2,2,2,1,1]

[4,2,2,2]

[1,1,1,1,1,1,1,1,1,1]

[2,1,1,1,1,1,1,1,1]

[2,2,1,1,1,1,1,1]

Space is divided based on integer partitions

Example of 10 agents:

• every CS ∈P′ contains at least
one of those coalitions

So, the bound is b = 4

this is the set
that we search • CS* can be divided into no more than 4 groups

114

• To establish a bound b = b, all we need is find a set of integer partitions,

I ‘ ⊆ I
n, such that, if we take every possible subset of every I ∈ I ‘, then

with these subsets we can partition every I ∈ I n into at most b parts.

• One can optimize this by looking for the set I ‘ ⊆ I
n of integer partitions

that corresponds to the smallest number of coalition structures, i.e., the

one that minimizes | U I ∈ I ‘ P𝐼
𝐴 |

So, the idea is:

 This has been shown to be the smallest possible set that must be

searched to establish a bound b = b

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

115

• to establish any bound, we showed that the required set can be

described in terms of subspaces that are represented by integer

partitions

• It would be useful to have an algorithm that can efficiently search

those subspaces.

• In the following slides we present an algorithm that does exactly that.

Anytime Algorithms

Identifying Subspaces with Worst-Case Guarantees

So far:

2. Algorithms based on the integer-partition based
representation

Anytime Algorithms

116

117

• An anytime algorithm was developed based on the Integer Partition

representation (the algorithm is called IP)

• IP uses the observation that, for any P𝐼
𝐴 ⊆ P𝐴, we can compute upper

and lower bounds on the value of the best coalition structure in P𝐼
𝐴.

• let 𝑀𝑎𝑥𝑠
𝐴 and 𝐴𝑣𝑔𝑠

𝐴 be the maximum and average values of all

coalitions of size s.

Anytime Algorithms

Integer Partition-based Search

118

Anytime Algorithms

Integer Partition-based Search

∑𝐶𝑆 ∈ P𝐼
𝐴 𝑉(𝐶𝑆)

|P𝐼
𝐴|

 = ∑𝑖∈𝐼 I(i) 𝐴𝑣𝑔𝑖
𝐴

Theorem: For any I ∈ I n, let I(i) be the multiplicity of i in I. Then:

∑ V(CS) = ∑ ∑ N𝐼
 𝑖v(C) = ∑ N𝐼

 𝑖 ∑ v(C) = ∑ N𝐼
 𝑖 𝑛

𝑖
 𝐴𝑣𝑔𝑖

𝐴

Proof:
For any C ⊆ A, the number of coalition structures in P𝐼

𝐴 that contain C
depends solely on the size of C, i.e., this number is equal for any two

coalitions that are of the same size. Denote this number as N𝐼
 |𝐶|

. Then:

CS∈P𝐼
𝐴

 i ∈ I C:|C|=i i ∈ I C:|C|=i i ∈ I

∀ i ∈ I , N𝐼
|𝐶|

 𝑛
𝑖

 = I(i) ∙ |P𝐼
𝐴|

∑𝑖 ∈ 𝐼 N𝐼
 |𝐶| 𝑛

𝑖
 𝐴𝑣𝑔𝑖

𝐴

|P𝐼
𝐴|

 = ∑𝑖∈𝐼 I(i) 𝐴𝑣𝑔𝑖
𝐴 To prove this, it suffices to prove:

We will prove this by showing that:

119

Anytime Algorithms

Integer Partition-based Search

We have shown that

How to prove that: ∀ i ∈ I, N𝐼
|𝐶|

 𝑛
𝑖

 = I(i) ∙ |P𝐼
𝐴| ? Observe that every

CS ∈ P𝐼
𝐴 contains exactly I(i) coalitions of size i. So:

∑ N𝐼
 |𝐶|

 = ∑ ∑ 1 = ∑ ∑ 1 = ∑ I(i) = I(i) ∙ |P𝐼
𝐴|

C:|C|=i C:|C|=I CS∈P𝐼
𝐴

:C∈CS CS∈P𝐼
𝐴

 C∈CS:|C|=i CS∈P𝐼
𝐴

∑ N𝐼
 |𝐶|

 = I(i) ∙ P𝐼
𝐴 (1)

C:|C|=i

On the other hand, since N𝐼
 |𝐶|

 is equal for all coalitions of size |C|. then:

∑ N𝐼
 |𝐶|

 = N𝐼
|𝐶|

 𝑛
𝑖

 (2)
C:|C|=i

N𝐼
|𝐶|

 𝑛
𝑖

 = I(i) ∙ |P𝐼
𝐴| From (1) and (2), we find that:

Anytime Algorithms

Integer Partition-based Search

IP computes bounds on the value of the best coalition structure in P𝐼
𝐴:

UBI = ∑𝑠∈𝐼 I(s)∙𝑀𝑎𝑥𝑠
𝐴 LBI = ∑𝑠∈𝐼 I(s)∙𝐴𝑣𝑔𝑠

𝐴

Computing UB∗ allows for establishing a bound on the quality of the best
coalition structure found at any point in time, denoted 𝐶𝑆∗∗; this bound is:

b = UB
∗

𝑉(CS∗)

Computing UB∗ allows for identifying subspaces that have no potential of
containing an optimal coalition structure, which are:

P𝐼
𝐴: UBI < LB∗

The remaining subspaces are searched using depth-first search combined
with branch-and-bound techniques

and computes bounds on the optimal coalition structure’s value, 𝑉(𝐶𝑆∗):

UB∗ = 𝑚𝑎𝑥I∈In UBI LB
∗ = 𝑚𝑎𝑥I∈In LBI

120

v(C2) = 100

𝑀𝑎𝑥𝑑
𝐴=200

Example: while searching some subspace, P[𝑎,𝑏,𝑐,𝑑,𝑒]
𝐴 , suppose the

value of the best coalition structure found so far was 800. Then, if:

𝑀𝑎𝑥𝑒
𝐴=200

Coalitions
of size a

v(C3) = 150

v(C1) = 100

Coalitions
of size b

Coalitions
of size c

Coalitions
of size d

Coalitions
of size e

Anytime Algorithms

Integer Partition-based Search

then no need to go deeper in the search tree, because in the very
best case we will find a coalition structure of which the value is:
100+100+150+200+200, which is less than 800

121

122

IP runs in O(𝑛𝑛) time, while IDP runs in O(3𝑛). However:

• IP is an anytime algorithm, unlike IDP

• IP is significantly faster than IDP for coalition-value distributions

• the bound that IP generates, i.e., b = UB
∗

𝑉(CS∗) is significantly better

than those obtained by searching particular subsets as before.

An algorithm, called IDP-IP, combines IDP with IP. It has the best of both:

• it takes from IDP the worst-case complexity, O(3𝑛)

• it takes from IP the ability to run very fast in practice, and the ability

to return solutions anytime

Anytime Algorithms

Integer Partition-based Search

3. Integer programming

Anytime Algorithms

123

{a1,a2,a4}

a1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Z =

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

xj ∈ {1,0}

{a3}

S v(Cj) ∙ xi

a2

a3

a4

max
j =1,…,2n

S zi,j ∙ xi = 1 subject to

Anytime Algorithms

Integer Programming

for i = 1, 2, …, n

for i = 1, 2, …, 2n and

j =1,…,2n

However, IP has been shown to significantly outperform this approach
124

Good scalability, “good” solution, no guarantees!

Metaheuristic Algorithms

125

126

As the number of agents increases, the problem becomes too hard,
and the only practical option is to use metaheuristic algorithms.

Advantage:

• Can usually be applied for very large problems.

Disadvantage:

• No guarantees that an optimal solution is ever found

• No guarantees on the quality of their solutions.

Examples:

• Genetic Algorithms [Sen & Dutta, 2000]

• Simulated Annealing [Keinanen, 2009]

• Decentralized greedy algorithm [Shehory & Kraus, 1998]

• Greedy algorithm based on GRASP [Di Mauro et al, 2010]

Metaheuristic Algorithms

Do we really need to explicitly specify the value of every
possible coalition?

Compact Representations

127

Compact Representations

128

• So far, we focused on the coalition structure generation

problem under the characteristic function representation
(where the input consists of a value for every possible
coalition)

• In what follows, we briefly discuss several papers that
consider alternative, often more concise, representations

Compact Representations

1. DCOP - Distributed Constraint Optimization

129

In this framework:

• each agent ai has a choice of actions:
di,1, di,2, di,3 …

• a (possibly negative) reward is assigned
to every combination of actions

• every agent must choose an action to
maximize the sum of rewards.

Possible
actions

a
1 a

4
a
3

a
2

Ueda et al. [2010] studied coalition structure generation where:

• the multi-agent system is represented as one big DCOP

• every coalition's value is computed as the optimal solution of the DCOP
among the agents of that coalition.

Possible
actions

Possible
actions

Possible
actions

𝒅𝟏,𝟏

𝒅𝟏,𝟐

𝒅𝟐,𝟏

𝒅𝟐,𝟐

𝒅𝟒,𝟏

𝒅𝟒,𝟐

𝒅𝟑,𝟏

𝒅𝟑,𝟐

130

DCOP - Distributed Constraint Optimization

Solving a DCOP is NP-hard. So, computing the values of all coalitions
requires solving 2n NP-hard problems!

So, how do we find an optimal coalition structure?

But who said we must follow the conventional method? which is:

1. compute values of all coalitions, and then

2. find the best combination of disjoint and exhaustive coalitions

We can represent the problem differently, so that an optimal coalition
structure can be found by solving a single DCOP !

The modification is controlled by a single parameter, , which specifies
the max number of permitted “multi-agent” coalitions

DCOP - Distributed Constraint Optimization (continued…)

131

DCOP - Distributed Constraint Optimization (continued…)

Every action, 𝒅𝒊,𝒋 , is replaced with: 𝒅𝒊,𝒋
 𝟏 , 𝒅𝒊,𝒋

 𝟐 , … , 𝒅𝒊,𝒋
  , 𝒅𝒊,𝒋

 𝒊𝒏𝒅.

 = 2

agent ai performs action di,j while
joining the 1st multi-agent coalition

agent ai performs action di,j
independently, i.e., in coalition {ai}

To find the optimal coalition structure, solve the new DCOP using any DCOP
algorithm, e.g., ADOPT [Modi, 2003] or DPOP [Petcu&Faltings, 2005]

a
4

𝒅𝟏,𝟏
 𝟏 , 𝒅𝟏,𝟏

 𝟐 , 𝒅𝟏,𝟏
 𝒊𝒏𝒅.

𝒅𝟏,𝟐
 𝟏 , 𝒅𝟏,𝟐

 𝟐 , 𝒅𝟏,𝟐
 𝒊𝒏𝒅.

Possible actions

a
3

a
2

a
1

Possible actions

Possible actions Possible actions

𝒅𝟐,𝟏
 𝟏 , 𝒅𝟐,𝟏

 𝟐 , 𝒅𝟐,𝟏
 𝒊𝒏𝒅.

𝒅𝟐,𝟐
 𝟏 , 𝒅𝟐,𝟐

 𝟐 , 𝒅𝟐,𝟐
 𝒊𝒏𝒅.

𝒅𝟑,𝟏
 𝟏 , 𝒅𝟑,𝟏

 𝟐 , 𝒅𝟑,𝟏
 𝒊𝒏𝒅.

𝒅𝟑,𝟐
 𝟏 , 𝒅𝟑,𝟐

 𝟐 , 𝒅𝟑,𝟐
 𝒊𝒏𝒅.

𝒅𝟒,𝟏
 𝟏 , 𝒅𝟒,𝟏

 𝟐 , 𝒅𝟒,𝟏
 𝒊𝒏𝒅.

𝒅𝟒,𝟐
 𝟏 , 𝒅𝟒,𝟐

 𝟐 , 𝒅𝟒,𝟐
 𝒊𝒏𝒅.

Possible actions

a
1

a
4

a
3

a
2

Possible actions

Possible actions
Possible actions

𝒅𝟏,𝟏

𝒅𝟏,𝟐

𝒅𝟐,𝟏

𝒅𝟐,𝟐

𝒅𝟒,𝟏

𝒅𝟒,𝟐

𝒅𝟑,𝟏

𝒅𝟑,𝟐

132

Theorem: Assume that v(C) > 0 for all C. Let 𝐶𝑆∗ be the optimal coalition

structure, and let 𝐶𝑆𝑘
∗ be the optimal when the number of “multi-agent”

coalitions is at most k. The following holds:
𝑉(𝐶𝑆∗)

𝑉(𝐶𝑆𝑘
∗)
 

⌊𝑛 2 ⌋

𝑘

DCOP - Distributed Constraint Optimization (continued…)

133

Proof: Assume that 𝐶𝑆∗ consists of l > k multi-agent coalitions, C1, …, Cl and

assume v(C1) > … > v(Cl). Then, v(Ck+1) +…+ v(Cl) <
𝑙−𝑘

𝑙
 V(𝐶𝑆∗)

Now, consider a coalition structure, 𝐶𝑆′ , which is identical to 𝐶𝑆∗, except that
every Ci : i = k+1, …, l is split into single-agent coalitions. Then, the maximum

difference in value between 𝐶𝑆′ and 𝐶𝑆∗ is:
𝑙−𝑘

𝑙
 V(𝐶𝑆∗). i.e.,

𝑉(𝐶𝑆∗)

𝑉(𝐶𝑆′)
 

𝑙

𝑘

Finally, observe that l < 𝑛 2  (because 𝐶𝑆∗ cannot possibly contain more than
𝑛 2  multi-agent coalitions).

134

Compact Representations

2. Marginal Contribution Nets

135

Marginal Contribution Nets (MC-nets)

Definition:
With MC-nets, a game is represented by a set of rules R:

• Each rule r ∈ R is of the form: Br  ϑr
 ϑr is a real value.
 Br is a Boolean formula over a set of variables {b1, …, bn}

• A rule r ∈ R is applicable to coalition C if Br is satisfied by the following

assignment:
 bi = true if ai ∈ C, and bi = false if ai ∉ C.

• The value of a coalition C is the sum of values of all rules applicable to C

Example:
The rules R = {b1 ∧ b2  5, b2  2} represent the game G=(A,v), where:
• A={a1,a2},
• v({a1})=0
• v({a2})=2
• v({a1,a2})=7

136

An MC-net is said to be basic if the left-hand side of any rule is a conjunction of
variables or their negations.

In this case, we write a rule r ∈ R as (Pr , Nr)  ϑr, where:
• Pr the set of positive literals
• Nr the set of negative literals.

Any game G=(A,v) can be represented by a basic MC-net with at most 2n-1 rules:
• for each coalition C, create the rule:

(∧ i:ai

∈C bi) ∧ (∧ i:ai ∉C ¬bi)  v(C)

However, many interesting games require much fewer rules

Marginal Contribution Nets (continued…)

Coalition structure generation was studied with a restricted class of basic MC-nets,
where Pr ≠ Ø and ϑr > 0 for every r.

Definition:

a set of rules R' ⊆ R is feasible if all rules in R' are applicable at the same time to
some coalition structure CS (i.e., every r ∈R' is applicable to some C ∈ CS).

Based on this: in MC-nets:

coalition structure generation = find a feasible set R' that maximizes ∑r∈R′ ϑr

Solution:
Use mixed integer programming (MIP)

In the following slides, we explain the MIP formulation

Marginal Contribution Nets (continued…)

137

The MIP formulation is based on the observation that, for any two rules r, r' the possible
relations between r and r' can be classified into 4 classes:

1. Incompatible (IC): This is when Pr ∩ Pr' ≠ Ø and (Pr ∩ Nr' ≠ Ø or Pr' ∩ Nr ≠ Ø).

Example: ({a1,a2}, Ø)  ϑ1 and ({a2,a3},{a1})  ϑ2 are not applicable at the same
time, because:
• the 1st rule requires a1 and a2 to appear together in a coalition,
• the 2nd rule requires a2 and a3 to appear together in a coalition that does not

contain a1

2. Compatible on same coalition (CS): when Pr ∩ Pr' ≠ Ø and Pr ∩ Nr' = Pr' ∩ Nr = Ø

Example: ({a1,a2}, Ø)  ϑ1 and ({a2,a3},{a4 })  ϑ2 are applicable at the same time in
any coalition structure CS that contains a coalition C, where that {a1,a2,a3} ⊆ C and
a4∉ C). Note: both rules apply to the same coalition.

3. Compatible on different coalitions (CD): Pr ∩ Pr' =Ø and (Pr ∩ Nr' ≠Ø or Pr' ∩ Nr ≠Ø)

Example: ({a1,a2}, Ø)  ϑ1 and ({a3,a4},{a1 })  ϑ2 are applicable at the same time in
some CS as long as a1,a2 appear in a coalition, and a3,a4 appear in a different one.

4. Independent (ID): This is when Pr ∩ Pr' = Pr ∩ Nr' = Pr' ∩ Nr = Ø

Marginal Contribution Nets (continued…)

138

Graphical representation (4 types of edges, representing the 4 types of relations)

Marginal Contribution Nets (continued…)

r1
P1 = {a1,a2}

N1= Ø

r2
P2 = {a2,a3}

N2= Ø

P4 = {a4}
N4= {a5}

P3 = {a3,a4,a5}
N3= {a1}

r4 r3

e1

e5

e6

e2

e4

e3

edge of type CD (compatible on
different coalitions)

edge of type CS (compatible on
the same coalition)

edge of type ID (independent)

edge of type IC (incompatible) 139

140

Marginal Contribution Nets (continued…)

Theorem:
A set of rules R' is feasible if and only if:

1. no pair r1,r2 ∈ R' are connected by an edge of type IC,

2. for any r1,r2 ∈ R', if r1 can be reached from r2 via series of edges of type CS,

then the edge (r1,r2) must NOT be of type CD

The 2nd condition can be generalize as follows: Any set of rules:

r1 r2

e1 . . . rm-1 rm

em-1

must all be applicable to a single coalition (which contains P1 ∪ P2 ∪ … ∪ Pm)

r3

e2

edge of type CD (compatible on
different coalitions)

edge of type CS (compatible on
the same coalition)

edge of type ID (independent)

edge of type IC (incompatible)

141

Marginal Contribution Nets (continued…)

r1
P1 = {a1,a2}

N1= Ø

r2
P2 = {a2,a3}

N2= Ø

P4 = {a4}
N4= {a5}

P3= {a3,a4,a5}
N3= {a1}

r4 r3

e1

e5

e6

e2

e4

e3

Intuition: consider an example (see figure):

• An edge of type CS connects r1 to r2. Thus,
they must be applicable to a single coalition
in CS, say C', such that P1∪ P2 ⊆ C'.

• An edge of type CS connects r2 to r3. Thus,
they must be applicable to a single coalition
in CS, say C'', such that P2 ∪ P3 ⊆ C''.

• Since P1 ∪ P2 overlaps with P2 ∪ P3 and since
the coalitions in CS are pairwise disjoint, we
must have C'=C''.

• This means that r1,r2,r3 must all be
applicable to the same coalition, i.e., the
edge between r1 and r3 must not be of the
type IC or CD.

• However, in our example we happen to have
an edge of type CD between r1 and r3. Thus,
any rule set containing r1,r2,r3 is not feasible.

edge of type CD (compatible on
different coalitions)

edge of type CS (compatible on
the same coalition)

edge of type ID (independent)

edge of type IC (incompatible)

142

Marginal Contribution Nets (continued…)

As we said earlier:
With MC-nets, finding an optimal coalition structure generation is equivalent to
finding a feasible set R' that maximizes ∑r∈R′ ϑr

The mixed Integer program:
The main objective is to find a set of rules that maximize ∑r∈R′ ϑr while avoiding

the following two cases:

r1

r2

r4

r3

edge of type CD (compatible on
different coalitions)

edge of type CS (compatible on
the same coalition)

edge of type ID (independent)

edge of type IC (incompatible)

r5 r6

143

Marginal Contribution Nets (continued…)

edge of type CD (compatible on
different coalitions)

edge of type CS (compatible on
the same coalition)

edge of type ID (independent)

edge of type IC (incompatible)

Details of mixed integer program:
• For every rule r, define a binary variable xr

• For every edge e of type CD, and for every
rule r such that:

• r is an endpoint of e, or
• r is an endpoint of some other edge

of type CS
define a variable 𝑦𝑟

𝑒

Example from the figure:
Since e3 is of type CD, we define variables:
𝑦𝑟

1

𝑒
3, 𝑦𝑟

2

𝑒
3, 𝑦𝑟

3

𝑒
3 (because every rule in {r1,r2,r3}

is either an end point of e3, or an end point
of some edge of type CS)

In this example, the constraints in the mixed
integer program correspond to:

𝑦𝑟
1

𝑒
3 ≠ 𝑦𝑟

3

𝑒
3

𝑦𝑟
1

𝑒
3 = 𝑦𝑟

2

𝑒
3 (only if x1=1 and x2=1)

𝑦𝑟
2

𝑒
3 = 𝑦𝑟

3

𝑒
3 (only if x2=1 and x3=1)

r1
P1 = {a1,a2}

N1= Ø

r2
P2 = {a2,a3}

N2= Ø

P4 = {a4}
N4= {a5}

P3= {a3,a4,a5}
N3= {a1}

r4 r3

e1

e5

e6

e2

e4

e3

144

Compact Representations

3. Coalitional Skill Games

In many settings, the value of a coalition can be defined in terms of
the skills that are possessed by the agents.

How do we represent this?

• Set of skills, S

• a set of tasks, 

• every task  ∈  has a skill requirement, 𝑆 ⊆ S, and a payoff

• each agent ai ∈ A has a set of skills 𝑆𝑎𝑖 ⊆ S

• A coalition C ⊆ A achieves a task  if it has all skills required for 

• there is a task value function, F : 2  ℝ. For every subset, ′ ⊆ ,
it specifies the payoff from achieving all tasks in ′

• The value of a coalition C is: v(C) = F({ : 𝑆 ⊆ ⋃𝑎
𝑖
∈C 𝑆𝑎𝑖})

145

Coalitional Skill Games

Coalitional Skill Games (continued…)

146

How do we find an optimal coalition structure?

To do this, we need more definitions:

• Given a skill set, S, its skill graph is a hypergraph, g = V, E:
 every agent is represented as a vertex,

 every skill, sj ∈ S is represented as a hyperedge 𝑒𝑠
𝑖
∈ E

connecting agents that possess this skill.

a1 a2 a3

a4 a5

a6 a7 a8

skill
graph

147

• Given a hypergraph, g = V, E, a tree decomposition of g is (Q, B):
 B is a set of subsets of V (each subset Bi ∈ B, is called a bag)
 Q is a tree whose node set is B, such that:

1. for each e ∈ E, there is a bag Bi ∈ B, such that e ∈ Bi
2. for each vi ∈ V, the set {Bi ∈ B : vi ∈ Bi} is non-empty and

connected in Q.

• The tree-width of (Q, B) is 𝑚𝑎𝑥𝐵
𝑖
∈𝑩 | Bi |.

• The tree-width of g is the minimum tree-width of (Q, B) over all
possible tree decompositions (Q, B) of g.

a1 a2 a4

a2 a4 a5

a4 a5 a7

a4 a6 a7

a2 a3 a5

a5 a7 a8

tree
decomposition

a1 a2 a3

a4 a5

a6 a7 a8

skill
graph

Coalitional Skill Games (continued…)

148

Main idea:
• In general, constraint satisfaction problems can be solved in polynomial

time if the graph is a tree.

Based on this:

• we will show how to represent the coalition structure generation problem
as solving multiple constraint satisfaction problems on the skill graph

• For each such problem, we will show how to convert it to a constraint
satisfaction problem on the tree decomposition

Coalitional Skill Games (continued…)

a1 a2 a4

a2 a4 a5

a4 a5 a7

a4 a6 a7

a2 a3 a5

a5 a7 a8

tree
decomposition

a1 a2 a3

a4 a5

a6 a7 a8

skill
graph

149

Note: a task that requires a skill which only x agents share can be performed
at most x times (this is when each one of those x agents appears in a
different coalition).

Based on this, if m is the largest number of tasks, and d is the largest number
of agents sharing a single skill, then a coalition structure can accomplish at
most dm tasks.

We can then define a candidate task solution as a set {𝑖}𝑖=1
ℎ , where each 𝑖

is a subset of , and h < dm.

Coalitional Skill Games (continued…)

Algorithm: iterate over all possible choices of {𝑖}𝑖=1
ℎ . For each such choice: find the

coalition structure that accomplishes it, or determine that it is not feasible. Next, we
show how this is done.

coalition structure
generation

find a candidate task solution that maximizes 𝑖=1
ℎ F(𝑖

)
and can be accomplished by some coalition structure.

=

Based on this: in coalitional skill games:

150

every coalition structure can be viewed as a coloring of agents
(agents with the same color belong to the same coalition).

Based on this, define a constraint satisfaction problem whose
underlying graph is the skill graph g, where:

Coalitional Skill Games (continued…)

a1 a2 a3

a4 a5

a6 a7 a8

skill
graph

• the variables correspond to the agents;

• the domain (i.e., the possible values) of
each variable (i.e., agent) consists of the
possible colors (i.e., the possible
coalitions that the agent can join), which
are h in total;

• For each skill s, we have the following
constraint: For i = 1, ..., h, if some task

in 𝑖 requires s, then at least one agent

in Ci has s.

151

• the variables correspond to the bags in
the tree decomposition;

• the domain of every bag consists of the
possible colorings of the agents in the bag.

• the constraints are of two types.

 The 1st prevents an agent from getting
different colors in two neighboring
bags. This, in turn, ensures that every
agent gets the same color in all bags.

 The 2nd type is the same as before:
For i = 1, ..., h, if some task in 𝑖

requires s, then at least one agent in Ci

has s.

Coalitional Skill Games (continued…)

a1 a2 a4

a2 a4 a5

a4 a5 a7

a4 a6 a7

a2 a3 a5

a5 a7 a8

tree
decomposition

To solve this problem, we define another constraint satisfaction problem
whose underlying graph is the tree decomposition of g, where:

152

Compact Representations

4. Agent-type Representation

153

Agent-type Representation

In the general case: each
agent is considered to be
unique.

a
1 a

3

a
6

a
2

a
7

a
4

a
9

a
5

a
8

a
10

10 agents

In the agent-type representation,
some agents are identical, i.e., of
the same “type”

a
1 a

3

a
2

a
1

a
1

a
2 a

2

a
2

a
3

a
3

10 agents with 3 types

154

Agent-type Representation (continued…)

Formally:

The set of agents is partitioned into subsets A1, …, AT, each subset is
called a type:

• for any type, Ai, every two agents in Ai make the same
contribution to any coalition that they join, i.e.,

∀aj,ak ∈ A
i, ∀C: ai,ak ∉ C, v(C ∪ {aj}) = v(C ∪ {ak})

the number
of types

155

Agent-type Representation (continued…)

A coalition is defined by the number of agents of each type that it contains.

In the agent-type representation, we
deal with “coalition-types”, e.g.

ψ = 〈 n1 ,…, nT 〉

In the general case, we deal
with “coalitions”, e.g.,

C = { a1 ,a4 ,a5 ,a7 ,a8 }

the number of
coalition members
that are of type A1

Note: the number of possible “coalition types” is O(|A|T)., because:

(|A1|+1) x … x (|AT|+1) < |A|T

So, instead of defining a value v(C) for every “coalition” (which are 2|A| in total),
we define a value vt(ψ) for every “coalition type” (which are O(|A|T) in total).
This number is polynomial in the number of agents

156

Agent-type Representation (continued…)

Given a coalition-type, ψ = 〈 n1 ,…, nT 〉, a partition of the agents in ψ is called
a type-partition.

Example:

Given a coalition type ψ = 〈4,4,4 〉, one possible type-partition of ψ is:

{〈0,1,2 〉, 〈4,3,2 〉}

the value of this type-partition is:

Vt({〈0,1,2 〉, 〈4,3,2 〉}) = vt(〈0,1,2 〉) + vt (〈4,3,2 〉)

Based on this: In the agent-type representation:

coalition structure generation = find a type-partition of A that maximizes Vt

157

Agent-type Representation (continued…)

Finding a type-partition of A that maximizes Vt can be done using dynamic
programming. This is based on the following:

• Let f t(ψ) be the value of the optimal type-partition of ψ.

• We can compute f t(ψ) recursively as follows:

 f t(ψ) =

0 if ni = 0 for i=1,…,T

otherwise max{ f t(〈n1- x1,…,nT- xT 〉) + vt(〈x1,…,xT 〉) :
 xi ≤ ni for I = 1,…,T }

The dynamic programming algorithm computes f t(A) recursively using the
above formula.

So far, we assumed that agents can split into subsets in
any way they like!

Constrained Coalition Formation

158

In conventional models:

• every possible subset of agents is a potential coalition,

• every possible partition of the set of agents is a potential
coalition structure.

Many times we have constraints that enforce or prohibit the
co-existence of certain agents in a coalition.

To date, very limited work on constraints, e.g., only permitting
certain sizes.

Constrained Coalition Formation (CCF)

159

Let P(A) be the set of all coalition structures. A constrained coalition
formation (CCF) game is a tuple G = 〈A,CS, v〉 where:

• A = {a1, …, an} is the set of agents

• CS ⊆ P(A) is the set of coalition structures that are feasible

• v : (⋃CS ∈ CS ⋃C ∈ CS {C}) → ℝ assigns a value to every coalition
that appears in some feasible coalition structure

Feasibility is defined for coalition structures rather than for coalitions:

• Example: a coalition structure is feasible only if it contains
coalitions of equal sizes.

• In this example, {{a1},{a2},{a3,a4}} is not feasible, even though each
of its coalitions may be a part of some feasible coalition structure

General CCF Model

160

A CCF game G = 〈A,CS, v〉 is locally constrained if there exists a set of
coalitions, C ⊆ 2A, such that CS = {CS ∈ P(A) : CS ⊆ C }.

• We will refer to the coalitions in C as feasible coalitions.

Constraints are represented using propositional logic:

• Boolean variables correspond to agents: BA = { bi : ai ∈ A }

• Let d be a propositional formula over BA constructed using the
classical connectives (⋀, ⋁, ¬, →, …).

• Coalition C satisfies d iff d is satisfied under the truth assignment
that sets all bi : i ∈ C to true, and all bi : i ∉ C to false.

• Example: C = {a1,a4,a5,a7} satisfies d = b4 ⋀ b5

Proposition: The class of propositionally definable CCF games is equal to
the class of locally constrained CCF games.

Locally Constrained CCF Games

161

A basic CCF game is a tuple G = 〈A, P, N, S, v〉 where:

• P is a set of subsets of A (Positive constraints)
• N is a set of subsets of A (Negative constraints)
• S ⊆ ℕ (permitted sizes)

A coalition C is feasible if:

• P ⊆ C for some P ∈ P
• N ⊈ C for all N ∈ N
• |C| ∈ S

We will denote the feasible coalitions as c (A, P, N, S)

162

Basic CCF Games

Example: We are organizing a conference, and we need to determine
from which restaurant(s) we are going to order the food.

163

Basic CCF Games

P N

S

1
2

3

164

• N : we don’t want 2 restaurants together providing chilli food, or
together providing vegetarian food.

• S : we do not want to coordinate between more than 3 restaurants.

• P : any combination of restaurants must either contain Nandos, Zizzi,
or the two Japanese restaurants that, together, provide a nice menu.

Basic CCF Games

General CCF games

Constraints are placed on Coalition Structures

Local CCF games
Constraints are placed on Coalitions

• Constraint can be expressed
using propositional logic

Basic CCF games
Constraints are placed on
Coalitions In the form of:

• Size constraints

• Positive constraints

• Negative constraints

165

166

size = 6 size = 5 size = 4 size = 3 size = 2 size=1

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 5, 6

1, 2, 4, 5, 6

1, 3, 4, 5, 6

2, 3, 4, 5, 6

1, 2, 3, 4

1, 2, 3, 5

1, 2, 3, 6

1, 2, 4, 5

1, 2, 4, 6

1, 2, 5, 6

1, 3, 4, 5

1, 3, 4, 6

1, 3, 5, 6

1, 4, 5, 6

2, 3, 4, 5

2, 3, 4, 6

2, 3, 5, 6

2, 4, 5, 6

3, 4, 5, 6

1, 2, 3

1, 2, 4

1, 2, 5

1, 2, 6

1, 3, 4

1, 3, 5

1, 3, 6

1, 4, 5

1, 4, 6

1, 5, 6

2, 3, 4

2, 3, 5

2, 3, 6

2, 4, 5

2, 4, 6

2, 5, 6

3, 4, 5

3, 4, 6

3, 5, 6

4, 5, 6

1, 2

1, 3

1, 4

1, 5

1, 6

2, 3

2, 4

2, 5

2, 6

3, 4

3, 5

3, 6

4, 5

4, 6

5, 6

1

2

3

4

5

6

P = {Ø} , N = { {1,2,3,4}, {1,2,4,5}, {5,6} }

Given a set of constraints, how do we generate the feasible coalitions?

How to Generate Feasible Coalitions?

Divide & Conquer

167

For any i ∈ A, we divide the feasible coalitions c (A, P, N, S) into:

Coalitions that do not contain ai : For those, we can:

• Remove ai from A

• Remove every P ∈ P such that ai ∈ P

• Remove every N ∈ N such that ai ∈ N

Coalitions that contain ai : For those, we can:

• Remove ai from A

• Remove ai from every P ∈ P such that ai ∈ P

• Remove ai from every N ∈ N such that ai ∈ N

Repeat the above recursively until we reach:
• an impossible case, where: P = Ø or N ∋ Ø

• or a base case: |P| = 1, ∩N = Ø, |{N ∈ N : |N|>1 }| < 1

f ({12345678} , {158},{257},{578} , {123}{235} , Ø , Ø)

P

168

A N P ∗
 N ∗

f ({2345678} , {58}{257}{578} , {23}{235} , {1} , Ø)

f ({2345678} , {257}{578} , {235} , Ø , {1})

Divide & Conquer

Divide & Conquer

169

Repeat the division recursively until we reach:

• an impossible case, where:
P = Ø or N ∋ Ø

• or a base case, where:

|P| = 1 and ∩N = Ø and |{N ∈ N : |N|>1 }| < 1

f ({12345678} , {158}{257}{578} , {123}{235} , Ø , Ø) f (A, P, N, P*, N*) =

170

Divide & Conquer

f ({234678} , Ø , {23} , {1} , {5}) f ({234678} , {8}{27} , {23} , {15} , Ø)

f ({34678} , {8} , Ø , {15} , {2})

 P* = {{158}} , N* = {{2}}

f ({34678} , {8}{7} , {3} , {152} , Ø)

f ({467} , {7} , Ø , {152} , {8})

 P* = {{1527}} , N* = {{8}} P* = {{1528}} , N* = Ø

Impossible
case

f ({467} , Ø{7} , Ø , {1528} , Ø)

f ({345678} , {578} , Ø , Ø , {1}{2}) f ({345678} , {57}{578} , {35} , {2} , {1})

P* = {{578}} , N* = {{1}{2}}

P* = {{257}} , N* = {{1}{3}}

f ({45678} , {57}, Ø , {2} , {1}{3}) f ({45678} , {57} , {5} , {23} , {1})

Impossible case

f ({2345678} , {58}{257}{578} , {23}{235} , {1} , Ø)

f ({2345678} , {257}{578} , {235} , Ø , {1})

171

Back to our Example

size = 6 size = 5 size = 4 size = 3 size = 2 size=1

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 5, 6

1, 2, 4, 5, 6

1, 3, 4, 5, 6

2, 3, 4, 5, 6

1, 2, 3, 4

1, 2, 3, 5

1, 2, 3, 6

1, 2, 4, 5

1, 2, 4, 6

1, 2, 5, 6

1, 3, 4, 5

1, 3, 4, 6

1, 3, 5, 6

1, 4, 5, 6

2, 3, 4, 5

2, 3, 4, 6

2, 3, 5, 6

2, 4, 5, 6

3, 4, 5, 6

1, 2, 3

1, 2, 4

1, 2, 5

1, 2, 6

1, 3, 4

1, 3, 5

1, 3, 6

1, 4, 5

1, 4, 6

1, 5, 6

2, 3, 4

2, 3, 5

2, 3, 6

2, 4, 5

2, 4, 6

2, 5, 6

3, 4, 5

3, 4, 6

3, 5, 6

4, 5, 6

1, 2

1, 3

1, 4

1, 5

1, 6

2, 3

2, 4

2, 5

2, 6

3, 4

3, 5

3, 6

4, 5

4, 6

5, 6

1

2

3

4

5

6

P = {Ø} , N = { {1,2,3,4}, {1,2,4,5}, {5,6} }

We wanted to generate the feasible coalitions using the base cases

P1* = {Ø} N1* = {{1},{5,6}}

P2* = {{1}} N2* = {{2},{5,6}}

P3* = {{1,2}} N3* = {{3},{4},{5,6}}

P4* = {{1,2,4}} N4* = {{3},{5}}

P5* = {{1,2,3}} N5* = {{4},{5,6}}

size = 6 size = 5 size = 4 size = 3 size = 2 size=1

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5

1, 2, 3, 4, 6

1, 2, 3, 5, 6

1, 2, 4, 5, 6

1, 3, 4, 5, 6

2, 3, 4, 5, 6

1, 2, 3, 4

1, 2, 3, 5

1, 2, 3, 6

1, 2, 4, 5

1, 2, 4, 6

1, 2, 5, 6

1, 3, 4, 5

1, 3, 4, 6

1, 3, 5, 6

1, 4, 5, 6

2, 3, 4, 5

2, 3, 4, 6

2, 3, 5, 6

2, 4, 5, 6

3, 4, 5, 6

1, 2, 3

1, 2, 4

1, 2, 5

1, 2, 6

1, 3, 4

1, 3, 5

1, 3, 6

1, 4, 5

1, 4, 6

1, 5, 6

2, 3, 4

2, 3, 5

2, 3, 6

2, 4, 5

2, 4, 6

2, 5, 6

3, 4, 5

3, 4, 6

3, 5, 6

4, 5, 6

1, 2

1, 3

1, 4

1, 5

1, 6

2, 3

2, 4

2, 5

2, 6

3, 4

3, 5

3, 6

4, 5

4, 6

5, 6

1

2

3

4

5

6

172

P = {Ø} , N = { {1,2,3,4}, {1,2,4,5}, {5,6} }

Back to our Example

Buy how do we search the feasible coalition structures?

This can be done using the base cases as follows:

17
3

Searching Feasible Coalition Structures

(P1*,N1*)

(P2*,N2*)

(P3*,N3*)

(P4*,N4*)

(P6*,N6*)

(P7*,N7*)

(P8*,N8*)

(P9*,N9*) (P10*,N10*)

(P11*,N11*)

(P12*,N12*)

(P14*,N14*)

(P15*,N15*)

a1 a1

a4

a7

a2

a1

a6

a3

a4

a6

a7

a6

a8 a8

a4

a7

a2

a1

a6

a3

a4

a6 a6

a7

a8

a1

a2

a5 a5

a2

a1

a8

(P13*,N13*)

L3 L4

L5

L1 L2

(P1*,N1*)

(P2*,N2*)

(P3*,N3*)

(P4*,N4*)

(P6*,N6*)

(P7*,N7*)

(P8*,N8*)

(P5*,N5*)

(P10*,N10*)

(P11*,N11*)

(P9*,N9*) (P12*,N12*)

(P14*,N14*)

(P15*,N15*) (P13*,N13*)

impossible
case

impossible
case

(P5*,N5*)

Put the base cases in lists
in the following order:

174

Searching Feasible Coalition Structures

L3

L4

L5

L1
L2

(P1*,N1*)

(P2*,N2*)

(P3*,N3*)

(P4*,N4*)

(P5*,N5*)

(P6*,N6*)

(P7*,N7*)

(P8*,N8*)

(P9*,N9*)

(P10*,N10*)

(P11*,N11*)

(P12*,N12*)

(P13*,N13*)

(P14*,N14*)

(P16*,N16*)

(P17*,N17*)
(P15*,N15*)

Observation:

Every feasible coalition structure contains:

• exactly one coalition from L1, and

• at most one coalition from Li : i = 2, 3, …

175

Searching Feasible Coalition Structures

L3

L4

L5

L1
L2

(P1*,N1*)

(P2*,N2*)

(P3*,N3*)

(P4*,N4*)

(P5*,N5*)

(P6*,N6*)

(P7*,N7*)

(P8*,N8*)

(P9*,N9*)

(P10*,N10*)

(P11*,N11*)

(P12*,N12*)

(P13*,N13*)

(P14*,N14*)

(P16*,N16*)

(P17*,N17*)
(P15*,N15*)

Algorithm:

For every coalition C1 ∈ L1:
• add C1 to CS and, and
• add the agents in C1 to Nj* for every (Pj*,Nj*) ∈ L2

If UCS ≠ A, repeat the process, i.e.,
• add a coalition C2 ∈ L2 to CS, and
• add the agents in C1 U C2 to Nj* for every (Pj*,Nj*) ∈ L3… etc.

To speed up the search, apply a branch-and-bound technique.

