Computational Social Choice

F. Brandt, V. Conitzer, U. Endriss

These introductory slides accompany Chapter 6 of the Book

Multiagent Systems (G. Weiss, ed.)

http://www.the-mas-book.info

More detailed slides can be obtained from the authors' homepages.

Motivation

- What is "social choice theory"?
 - How to aggregate possibly conflicting preferences into collective choices in a fair and satisfactory way?
 - voting (e.g., political, but also wikipedia, facebook, debian)
 - resource allocation, fair division (e.g., cake cutting)
 - coalition formation, matching (e.g., house allocation, college admission)
 - webpage ranking (e.g., search engine aggregators, pagerank algorithm)
 - collaborative filtering (e.g., amazon or ebay)
 - Origins: mathematics, economics, and political science
 - Essential ingredients
 - Autonomous agents (e.g., human or software agents)
 - A set of alternatives (usually finitely many)
 - Preferences over alternatives
 - Aggregation functions

Key Questions

- What does it mean to make rational choices?
- Which formal properties should an aggregation function satisfy?
- Which of these properties can be satisfied simultaneously?
- How difficult is it to compute collective choices?
- Can voters benefit by lying about their preferences?

Recommended Books

- Introductory
 - H. Moulin: Axioms of Cooperative Decision Making. Cambridge University Press, 1988
 - W. Gärtner: A Primer in Social Choice Theory, Oxford University Press, 2009
 - M. Allingham: Choice Theory A very short introduction. Oxford University Press, 2002
- Advanced
 - D. Austen-Smith and J. Banks: Positive Political Theory I & II, University of Michigan Press, 1999 & 2005
 - J. Laslier: *Tournament Solutions and Majority Voting*. Springer-Verlag, 1997
 - A. Taylor: Social Choice and the Mathematics of Manipulation, Cambridge University Press, 2005.

<u>Amartya Sen</u>

- Nobel prize 1998
- Kenneth J. Arrow
 - Arrow's impossibility theorem
 - Nobel prize 1972
- John George Kemeny
 - 1926-1992
 - BASIC programming language
- Charles Dodgson (Lewis Carroll)
 1832-1898
- Marie Jean Antoine Nicolas Caritat (Marquis de Condorcet)
 - 1743-1794

Brandt, Conitzer, Endriss

Plurality

- Why are there different voting rules?
 - What's wrong with plurality (the most widespread voting rule) where alternatives that are ranked first by most voters win?
 - Consider a preference profile with 21 voters, who rank four alternatives as in the table below.

3	5	7	6
а	а	b	С
b	С	d	b
С	b	С	d
d	d	а	а

- Alternative *a* is the unique plurality winner despite the fact that
 - a majority of voters think *a* is the worst alternative,
 - *a* loses against *b*, *c*, and *d* in pairwise majority comparisons, and
 - if the preferences of all voters are reversed, a still wins.

5 Common Voting Rules

- Plurality (most democratic countries, ubiquitous)
 - Alternatives that are ranked first by most voters
- Borda (Slovenia, academic institutions, Eurovision song contest)
 - The most preferred alternative of each voter gets k-1 points, the second most-preferred k-2 points, etc. Alternatives with highest accumulated score win.
- Plurality with runoff (France)
 - Two alternatives that are ranked first by most voters face off in a majority runoff.
- Instant-runoff (Australia, Ireland, Malta, Academy award)
 - Alternatives that are ranked first by the lowest number of voters are deleted. Repeat until no more alternatives can be deleted.
- Sequential majority comparisons (US congress)
 - Alternatives that win a sequence of pairwise comparisons.

A Curious Preference Profile

(due to M. Balinski)

33%	16%	3%	8%	18%	22%
а	b	С	С	d	е
b	d	d	е	е	С
С	С	b	b	С	b
d	е	а	d	b	d
е	а	е	а	а	а

- Who will win according to the 5 common voting rules?
 - Plurality
 - Borda
 - Sequential majority comparisons (say, a,b,c,d,e)
 - Instant-runoff
 - Plurality with runoff

Desirable Properties (Axioms)

• Anonymity

- The voting rule treats voters equally.
- Neutrality
 - The voting rule treats alternatives equally.

Monotonicity

 A chosen alternative will still be chosen when it rises in individual preference rankings (while leaving everything else unchanged)

• Pareto optimality

An alternative will not be chosen if there exists another alternative such that all voters prefer the latter to the former.

	Anonymity	Neutrality	Monotonicity	Pareto
Plurality	\checkmark	\checkmark	\checkmark	\checkmark
Borda	\checkmark	\checkmark	\checkmark	\checkmark
Plurality w/ runoff	\checkmark	\checkmark	-	\checkmark
Instant- runoff	\checkmark	\checkmark	_	\checkmark
SMC	\checkmark	-	\checkmark	-

6	5	4	2	l
а	С	b	b	L
b	а	С	а	l
С	b	а	С	

6	5	4	2
а	С	b	а
b	а	С	b
С	b	а	С

Runoff rules fail monotonicity

Strategic Manipulation

- So far, we assumed that the *true* preferences of all voters are known.
- This is an unrealistic assumption because voters may be better off by misrepresenting their preferences.
- Plurality winner a
 - b wins if the last two voters vote for b, whom they prefer to a.

- How about Borda?
 - *a*'s score: 9, *b*'s score: 14, c's score: 13, *d*'s score: 6
 - c wins if the voters in the second column, who prefer c to b, move b to the bottom.

Gibbard-Satterthwaite Theorem

- Why is manipulation undesirable?
 - Spending energy and resources on manipulative activities will be rewarded.
 - Manipulative skills are not spread evenly across the population.
 - Predictions or theoretical statements about voting rules become extremely difficult.
- Every reasonable voting rule is prone to manipulation whenever there are more than two alternatives.
 - Gibbard-Satterthwaite impossibility theorem (1973/75)
- Research in computational social choice has investigated the question of whether manipulation can be made computationally difficult.

Hardness of Manipulation

- Finding a beneficial manipulation for the following voting rules is NP-hard:
 - Second-order Copeland (Bartholdi, Tovey, and Trick; 1989)
 - Instant-runoff (Bartholdi and Orlin; 1991)
 - Nanson's rule (Narodytska et al.; 2011)
- Many more similar results for weighted voting and coalitional manipulation.
 - Key problem: NP-hardness is a worst-case measure
 - A string of recent results has cast doubt on this strand of research, culminating in work by Isaksson et al. (2010).
 - Essentially, they show that for every efficiently computable, neutral voting rule, a manipulable preference profile with a corresponding manipulation can easily be found.

Probabilistic Voting Rules

- Another idea to circumvent the Gibbard-Satterthwaite impossibility is to introduce randomization.
- Probabilistic voting rules yield probability distributions (socalled lotteries) over alternatives.
 - Random dictatorship: Pick a voter a random (*independently* of the voters' preferences) and choose his favorite alternative.
- Unfortunately, there is another far-reaching negative result.
- Whenever there are more than two alternatives, every nonmanipulable, Pareto-optimal, probabilistic voting rule has to be a random dictatorship (Gibbard; 1977).

Strategic Abstention

- Consider the following preference profile and plurality with runoff.
 - Alternative *a* wins.
 - If two voters of the last column do not vote, *c* wins.
 - These voters prefer *c* to *a*.

4	3	4
а	С	b
b	а	С
С	b	а

- Voters in the last column are better off by abstaining,
 i.e., by not voting at all.
- Plurality and Borda are resistant to strategic abstention.
 - If winner changes from a to b by abstaining, the abstainer deducts strictly more points from a than from b.
- Most other voting rules suffer from strategic abstention.

Examples of Other Voting Rules

• Young's rule

- If an alternative wins against every other alternative in pairwise majority comparisons, it is called a Condorcet winner.
- Young's rule yields alternatives that can be made a Condorcet winner by removing as few voters as possible.
- Computing Young winners is NP-hard!

• Approval voting

- Rather than having complete preference rankings, voters only approve or disapprove of alternatives.
- The alternative with the most approvals win.

• Range voting

- Voters assign up to 100 points to each alternative.
- Alternatives with maximal scores win.